Testhouse

C&S group GmbH Schweigerstrasse 13A D-38302 Wolfenbuettel Phone: +49 5331/ 90 555 - 0 Fax: +49 5331/ 90 555 - 110

Final

Test Report

P22_0213_007_Chipanalog_LINiso7_CA-IF1021_Report00 Date of Approval: 2022-Aug-22

	-			
Device Under Te	st		Customer	
Device Name CA-IF1021S-Q1 CA-IF1021D-Q1			Order No.	P22_0213
Manufacturer	Shanghai Chipanalog Microelectronics Co.,		Name	Shanghai Chipanalog Microelectronics Co., Ltd.
Type / Version	CA-IF1021S-Q1		Address	2F, Block C,GaoJing Road,Qingpu
Sample 1021S-Q1 84540 03 marking DUJ022170				District Shanghai, 201601 P.R. China
Number of Page	S	50		
Test Period		from ww28/2022 until ww28/2022		
Test Method / Test Requirement		LIN Conformance Test Specification		
Performed Tests and References		 LIN OSI Layer 1 – Physical Layer ISO 17987-7:2016 Road vehicles – Local Interconnect Network (LIN) – Part 7: Electrical Physical Layer (EPL) conformance test specification – EPL 12 V LIN devices with RX and TX access 		
Conformance Test Results		The Test Results refer to the delivered device.		
1 ISO LIN confo -Physical Lay	ormance tests er-*	Pass		
* DAlde coord -lite	d according to DIN EN		7005-0040 -	he correditation is only valid for the

* DAkkS accredited according to DIN EN ISO/IEC 17025:2018. The accreditation is only valid for the scope of accreditation listed in the annex to certificate D-PL-18596-01-00.

For detailed information see chapter Test List at the following pages.

This Test Report shall not be reproduced without written approval of the test house, except in full and unchanged.

Approved by

Test performed by

L. Kukla, Project Manager

J. Eversmeier, Test Engineer

Table of Content

ΤA	BLE OF CONTENT	2
RE	VISION HISTORY	3
1	DEVICE UNDER TEST (DETAILED)	4
2	SETUP FOR DEVICE UNDER TEST	5
3	TEST EQUIPMENT	7
4	TECHNICAL CORRESPONDENCE	8
5	TEST LIST	9
Ę	5.1 DYNAMIC TESTS	9
Ę	5.2 STATIC TESTS 1	17
6	TEST PROTOCOL DYNAMIC TESTS	24
Ę	5.2 OPERATIONAL CONDITIONS – CALIBRATION	24
	5.2.2 [EPL–CT 1] Operating voltage range	24
	5.2.3 Threshold voltages	25
	5.2.4 [EPL–CT 5] Variation of VSUP_NON_OP	30
	5.2.5 IBUS under several conditions	31
	5.2.6 Slope control	33
	5.2.7 Propagation delay	39
	5.2.8 Supply voltage offset	40
	5.2.9 Failure	44
	5.2.10 [EPL–CT 22] Verifying internal capacitance and dynamic interference – IUT as slave	46
Ę	5.3 Operation Mode Termination	50
	5.3.2 [EPL–CT 23] Measuring internal resistor – IUT as slave	50

Revision History

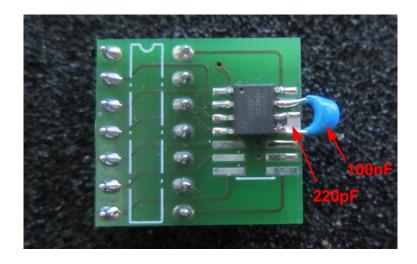
Old revision	New revision	Amendment Description	Editor
-	00	Final version	LK

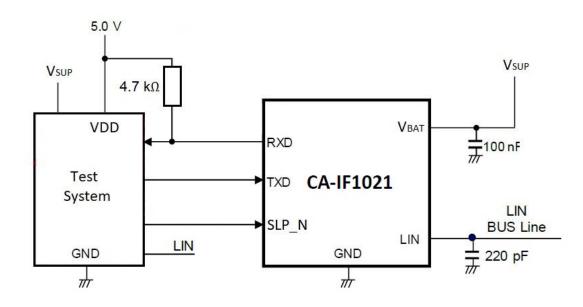
1 Device Under Test (detailed)

General		
Date of Sample Arrival	27.06.2022	
Manufacturer	Shanghai Chipanalog Microelectronics Co., Ltd.	
Sample Marking	1021S-Q1 84540 03 DUJ022170	
Test performed with DUT no.	#1	

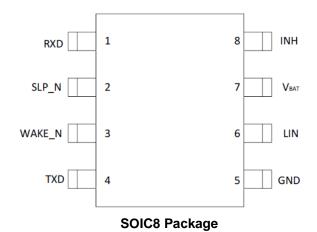
Device Specification (all information provided by the customer)		
Device Name	CA-IF1021S-Q1 / CA-IF1021D-Q1	
Type / Version	CA-IF1021S-Q1	
Design step	-	
HW-Version	-	
SW-Version	-	

Documentation (all information provided by the customer)		
Hardware manual	-	
User manual / datasheet	CA-IF1021-Q1_datasheet_Version1.01_en_20220629.pdf (Version 1.01, 2022/06/29)	


Device Classification	
According to	A


Software Specification		
IDE	-	
Compiler	-	
Device	-	

Supplement		
Node Capability File	-	
Connection plan	P22_0213_001_Connection_Plan00.pdf	


2 Setup for Device Under Test

Pin Configuration and Functions

No.	Function	Description
1	RXD	Data receive output. Open-drain output requires an external pull-up resistor. The RXD reads back information from the LIN bus in normal operation mode and indicates a wake-up event in standby mode, RXD is low if a wake event occurred.
2	SLP_N	Enable input with integrated pull-down resistor to GND. A logic high on SLP_N pin puts the transceiver in normal operating mode. A logic low on SLP_N pin to select the sleep mode.
3	WAKE_N	Active-low local wake-up input. Pull WAKE low to generate a local wake-up event.
4	TXD	Transmit data input. TXD is a CMOS/TTL compatible input from microcontroller with an internal pulled down resistor to GND. Set this pin to "low" to drive a dominant stat on LIN Bus. In standby mode, TXD indicates the wake-up source as an output. Active low after a wake-up event.
5	GND	Ground
6	LIN	LIN bus input/output; external capacitance with 220pF added between LIN and ground.
7	VBAT	Battery voltage input. Bypass V_{BAT} to ground with at least $0.1\mu F$ ceramic capacitor as close as possible to the device
8	INH	Inhibit Output. INH can be used to control one or more external voltage regulators and microcontroller. Active high after a wake-up event.

Interface voltage is set to 5.0 V for all tests.

3 Test Equipment

The following test equipment and test system have been used.

No.	Component	Manufacturer	Version / Type	ID
Test S	ystem 2			
C&S H	ardware			
ISO179	987-7			
1	LIN-Power switch Board	C&S	Rev 2.1	CS140214
2	LIN-Stimulation Board	C&S	Rev 2.2	CS140210
3	LIN-GND-shift Board	C&S	Rev 1.3	CSHW_000075
4	LIN-IUT Board	C&S	Rev 2.1	CS140211
5	LIN-Adapter Board	C&S	Rev 2.2	CS140212
6	LIN-Adapter Board	C&S	Rev 2.2	CSHW_000073
7	LIN-Adapter Board	C&S	Rev 1.1	CSHW_000040
8	LIN-Adapter Board	C&S	Rev 1.1	CSHW_000099
9	LIN Stimuli Board	C&S	Rev.1.2	CSHW_000010
10	LIN IUT Board	C&S	Rev 2.1	CSHW_000193
LIN ex	t. Duty Cycle Test			
11	Duty Cycle Board	C&S	Rev 1.0	CSHW_000212
Test S	ystem Hardware			
12	Power Supply	Hameg	HM 8142	CS140142
13	Power Supply	Hameg	HM 8142	700013
14	Power Supply	Hameg	HM 8142	CS140220
15	Oscilloscope	Agilent	54622D	700035
16	Oscilloscope	Tektronix	MSO54	CS140701
17	Function/ Waveform generator	Hewlett Packard	33120A	700007
18	Function/ Waveform generator	Hewlett Packard	33120A	700043
19	Data Acquisition /Switch Unit	Agilent	34970A	700062
20	Data Acquisition /Switch Unit	Agilent	34970A	CS140146
21	20-Channel-Multiplexer Module (2/4 Wire)	Agilent	34901A	700096
22	20-Channel-Multiplexer Module (2/4 Wire)	Agilent	34901A	700095
23	20-Channel Actuator Module	Agilent	34903A	CS140145
Softwa	are			
24	LIN_PL_Supervisor	C&S	1.0.5.0, Build 5	

4 Technical Correspondence

Name	Lothar Kukla
Phone	+49 5331 90555 400
Fax	+49 5331 90555 110
Email	L.Kukla@cs-group.de

5 Test List

5.1 Dynamic Tests

Following test case numeration relates on the corresponding test specification.

No.	Description		Result	Comment
5.2.2	[EPL-CT 1] Operating Vo	Itage Range		
	[EPL-CT 1].1 VIUT range: [V _{SUP} / V _{BAT}] = [7V to 18V] / [8V to 18V]	Pass	RX shows the 10kHz Signal, The maximum deviation is less or equal than 10%
	[EPL-CT 1].1 VIUT range:	[VSUP / VBAT] = [18 to 7V] / [18V to 8V]	Pass	RX shows the 10kHz Signal, The maximum deviation is less or equal 10%
5.2.3	Threshold Voltages			
5.2.3.2	[EPL-CT 2] IUT as Receiv	ver: V _{SUP} @ V _{BUS_DOM} (down)		
	[EPL-CT 2].1 V _{SUP} = 7V	Signal Range [18V to 4.2V]	al Range [18V to 4.2V] Pass	
		Signal Range [2.8V to -1.05V]	Pass	RX is dominant
		Signal Range [18V to 8.4V]	Deee	RX is recessive
	[EPL-CT 2].2 V _{SUP} = 14V	Signal Range [5.6V to -2.1V]	Pass	RX is dominant
		Signal Range [20.7V to 10.8V]	Deee	RX is recessive
	[EPL-CT 2].3 V _{SUP} = 18V	Signal Range [7.2V to -2.7V]	Pass	RX is dominant
5.2.3.3	IUT as Receiver: V _{SUP} @	V _{BUS_REC} (up)		
		Signal Range [-1.05V to 2.8V]	Deec	RX is dominant
	[EPL-CT 3].1 V _{SUP} = 7V	Signal Range [4.2V to 18V]	Pass	RX is recessive
		Signal Range [-2.1V to 5.6V]	Page	RX is dominant
	[EPL-CT 3].2 V _{SUP} = 14V	Signal Range [8.4V to 18V]	Pass	RX is recessive

No.	Description		Result	Comment
		Signal Range [-2.7V7.2V]	Pass	RX is dominant
	[EPL-CT 3].3 V _{SUP} = 18V	Signal Range [10.8V20.7V]	Pass	RX is recessive
5.2.3.4	[EPL-CT 4] IUT as Receiv	ver: V _{SUP} @ V _{BUS}		
		Signal Range [-1.05V8.05V] up		VBUS_CNT is in range of
	[EPL-CT 4].1 V _{SUP} = 7V	Signal Range [8.05V1.05V] down	Pass	[0.475…0.525]*V _{SUP} , V _{HYS} is less than 0.175* V _{SUP} .
		Signal Range [-2.1V16.1V] up	_	V _{BUS_CNT} is in range of
	[EPL-CT 4].2 V _{SUP} = 14V	Signal Range [16.1V2.1V] down	Pass	$[0.4750.525]^*V_{SUP}, V_{HYS}$ is less than 0.175* V_{SUP} .
		Signal Range [-2.7V20.7V] up	_	V _{BUS_CNT} is in range of
	[EPL-CT 4].3 V _{SUP} = 18V	Signal Range [20.7V2.7V] down	Pass	[0.475…0.525]*Vsup, Vнys is less than 0.175* Vsup.
5.2.4	[EPL-CT 5] Variation of V	/ _{SUP_NON_OP} ∈ [- 0.3V 7.0V]; [18V 40V]		
	[EPL-CT 5].1 Class B devi	ce as master V _{IUT} = [-0.3V8V], [18V40V]	Not applicable	IUT is a Class A device
	[EPL-CT 5].2 Class B devi	ce as slave V _{BAT} = [-0.3V8V], [18V40V]	Not applicable	IUT is a Class A device
	[EPL-CT 5].3 Class A devi	ce V _{SUP} = [-0.3V7V], [18V40V]	Pass	No dominant state occurs, the IUT is not destroyed, the recessive voltage afterwards is less or equal +/-5%
5.2.5	IBUS Under Several Cond	itions		
5.2.5.1	[EPL-CT 6] I _{BUS_LIM} @ do	ominant state (driver on)		
	[EPL-CT 6].1 VIUT: [VSUP / 1	Vbat] = 18V; Rmeas = 440 Ω	Pass	LIN shows the rectangular signal, the dominant state bus level is lower than TH_DOM=4.518V for transceiver
5.2.5.2	[EPL-CT 7] I _{BUS_PAS_dom} : I	UT in recessive state: V _{BUS} = 0 V		
	[EPL-CT 7].1 VIUT: [V _{SUP} / Y	V _{BAT}] = 12V; R _{MEAS} = 499 Ω	Pass	The maximum voltage drop is higher than -500mV.

No.	Description	Result	Comment
5.2.5.3	[EPL-CT 8] $I_{BUS_PAS_{rec}}$: IUT in recessive state: V_{SUP} = 7V with variation of VBUS \in [8V to 18V]		
	[EPL-CT 8].1 VIUT: [V _{SUP} / V _{BAT}] = 7V / 8V; R _{MEAS} = 1000 Ω	Pass	The maximum voltage drop is less or equal than 20mV.
5.2.6	Slope Control		
5.2.6.2	[EPL-CT 9] Measuring the duty cycle @ 10.417 kbit/s – IUT as transmitter		
	[EPL-CT 9].1 V _{IUT} = 7V/8V; V _{PS2} =6.0V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].2 V _{IUT} = 7V/8V; V _{PS2} =6.6V; Bus Load = 1nF, 1k Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].3 $V_{IUT} = 7V/8V$; $V_{PS2}=6.0V$; Bus Load = 6.8nF, 660 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].4 V_{IUT} = 7V/8V; V_{PS2} =6.6V; Bus Load = 6.8nF, 660 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].5 V _{IUT} = 7V/8V; V _{PS2} =6.0V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].6 V_{IUT} = 7V/8V; V_{PS2} =6.6V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417.
	[EPL-CT 9].7 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].8 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].9 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.

No.	Description	Result	Comment
	[EPL-CT 9].10 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 6.8nF, 660 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].11 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].12 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].13 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].14 VIUT = 18V/18.6V; VPS2=17.6V; Bus Load = 1nF, 1k Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].15 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].16 V _{IUT} = 18V/18.6V; V _{PS2} =17.6V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
	[EPL-CT 9].17 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 10nF, 500Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.

No.	Description	Result	Comment
	[EPL-CT 9].18 V _{IUT} = 18V/18.6V; V _{PS2} =17.6V; Bus Load = 10nF, 500Ω	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
5.2.6.3	[EPL-CT 10] Measuring the duty cycle @ 20.0 kbit/s – IUT as transmitter		
	[EPL-CT 10].1 V _{IUT} = 7V/8V; V _{PS2} =6.0V; Bus Load = 1nF, 1k Ω	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].2 V _{IUT} = 7V/8V; V _{PS2} =6.6V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].3 V _{IUT} = 7V/8V; V _{PS2} =6.0V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].4 V_{IUT} = 7V/8V; V_{PS2} =6.6V; Bus Load = 6.8nF, 660 Ω	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].5 V _{IUT} = 7V/8V; V _{PS2} =6.0V; Bus Load = 10nF, 500Ω	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].6 V_{IUT} = 7V/8V; V_{PS2} =6.6V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D1 is greater or equal than 0.396.
	[EPL-CT 10].7 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].8 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].9 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.

No.	Description	Result	Comment
	[EPL-CT 10].10 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].11 V _{IUT} = 7.6V/8.6V; V _{PS2} =6.6V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].12 V _{IUT} = 7.6V/8.6V; V _{PS2} =7.2V; Bus Load = 10nF, 500 Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].13 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].14 V _{IUT} = 18V/18.6V; V _{PS2} =17.6V; Bus Load = 1nF, 1kΩ	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].15 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].16 V _{IUT} = 18V/18.6V; V _{PS2} =17.6V; Bus Load = 6.8nF, 660Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
	[EPL-CT 10].17 V _{IUT} = 18V/18.6V; V _{PS2} =17V; Bus Load = 10nF, 500Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.

No.	Description	Result	Comment
	[EPL-CT 10].18 V _{IUT} = 18V/18.6V; V _{PS2} =17.6V; Bus Load = 10nF, 500Ω	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
5.2.7	Propagation Delay		
5.2.7.2	[EPL-CT 11] Propagation delay of the receiver		
	$ [\text{EPL-CT 11}].1 \text{ V}_{\text{SUP}} = 7.0 \text{V}; \text{ RXD Load} = 20 \text{pF} / 2.4 \text{k}\Omega \text{ (for "open drain" transceiver only)} $	Pass	t _{rx_pd} is less than 6μs, t _{rx_sym} is in range +/- 2μs.
	[EPL-CT 11].2 V _{SUP} = 14V; RXD Load = $20pF / 2.4k\Omega$ (for "open drain" transceiver only)	Pass	t _{rx_pd} is less than 6μs, t _{rx_sym} is in range +/- 2μs.
	[EPL-CT 11].3 V _{SUP} = 18V; RXD Load = $20pF / 2.4k\Omega$ (for "open drain" transceiver only)	Pass	t _{rx_pd} is less than 6μs, t _{rx_sym} is in range +/- 2μs.
5.2.8	Supply Voltage Offset		
5.2.8.2	GND / VBAT Shift Test – Dynamic		
5.2.8.3	[EPL-CT 12] GND Shift Test – Dynamic – IUT as Class A Device	Pass	The duty cycle of RXD2 is in range D1 – 2µs D2 + 2µs.
5.2.8.4	[EPL-CT 13] GND Shift Test – Dynamic – IUT as Class A Device	Pass	The duty cycle of RXD2 is in range D1 – 2µs D2 + 2µs.
5.2.8.5	[EPL-CT 14] VBAT Shift Test – Dynamic – IUT as Class A Device	Pass	The duty cycle of RXD2 is in range D1 – 2µs D2 + 2µs.
5.2.8.6	[EPL-CT 15] VBAT Shift Test – Dynamic – IUT as Class A Device	Pass	The duty cycle of RXD2 is in range D1 – 2µs D2 + 2µs.
5.2.8.7	[EPL-CT 16] GND Shift Test – Dynamic – IUT as Class B Device	Not applicable	IUT is a Class A device
5.2.8.8	[EPL-CT 17] GND Shift Test – Dynamic – IUT as Class B Device	Not applicable	IUT is a Class A device
5.2.8.9	[EPL-CT 18] VBAT Shift Test – Dynamic – IUT as Class B Device	Not applicable	IUT is a Class A device
5.2.8.10	[EPL-CT 19] VBAT Shift Test – Dynamic – IUT as Class B Device	Not applicable	IUT is a Class A device
5.2.9	Failure		

No.	Description	Result	Comment
5.2.9.2	[EPL-CT 20] Loss of Battery	Pass	No parasitic current path is formed between the bus line and the DUT.
5.2.9.3	[EPL-CT 21] Loss of GND	Pass	No parasitic current path is formed between the bus line and the DUT.
5.2.10	[EPL-CT 22] Verifying internal capacitance and dynamic interference – IUT as Slave		
	IEDL CT 2214 Normal neuror oundly	Pass	C_{SLAVE} is less or equal than 250pF: $T_{\text{INT}} \leq T_{\text{REF}}$
	[EPL-CT 22].1 Normal power supply	Pass	The IUT does not interfere with the dynamic stimulus
		Pass	C_{SLAVE} is less or equal than 250pF: $T_{\text{INT}} \leq T_{\text{REF}}$
	[EPL-CT 22].2 IUT loss of GND	Pass	The IUT does not interfere with the dynamic stimulus
		Dece	C_{SLAVE} is less or equal than 250pF: T_{INT} \leq T_{REF}
	[EPL-CT 22].3 IUT loss of V _{SUP}	Pass	The IUT does not interfere with the dynamic stimulus
5.3	Operation Mode Termination		
5.3.2	[EPL–CT 23] Measuring internal resistor – IUT as slave	Pass	R_{INT} value is included in the range [20 k Ω ; 60 k Ω]
5.3.3	[EPL–CT 24] Measuring internal resistor – IUT as master	Not applicable	IUT as Slave

5.2 Static Tests

The motivation of static test cases is to check the availability and the boundaries in the datasheet of the IUT. For all integrated circuits, every related parameter in Table 41 shall be part of the datasheet and fulfil the specified boundaries in terms of physical worst case condition. Datasheet parameter names may deviate from the names in Table 41, but in this case, a cross-reference list (datasheet versus Table 41) shall be provided for this test. Parameter conditions may deviate from the conditions in Table 41, if the datasheet conditions are according to the physical worst case context in Table 41 at least.

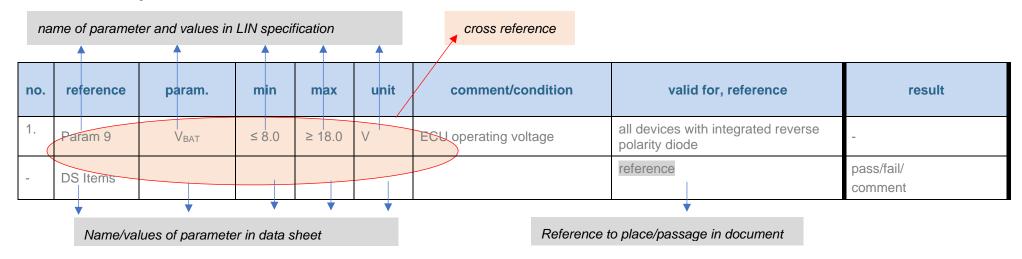

If one parameter does not pass this test, the result of the whole conformance test is "Failed". See ISO 17987-4:2016, Table 10 and Table 20.

Table 41 defines the test system "LIN static test parameters for datasheets of integrated circuits".

And in general, ISO 17987-4:2016, **1 Scope**: "All parameters in this specification are defined for the ambient temperature range from -40°C to 125°C".

Used data sheets: **CA-IF1021-Q1_datasheet_Version1.01_en_20220629.pdf** (*Version 1.01, 2022/06/29*) (reference indicated with 'Ref 1') Temperature range: Over recommended operating conditions, $TJ = -40^{\circ}C$ to 150°C (unless otherwise noted) (Ref 1; 7.5 Electrical Characteristics)

Notes to the following table:

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
1.	Param 9	V _{BAT} ^a	≤ 8.0	≥ 18.0	V	ECU operating voltage range	All devices with integrated reverse polarity diode	-
-								Not applicable No diode
2.	Param 10	Vsup ^b	≤ 7.0	≥ 18.0	V	Supply voltage range	All devices without integrated reverse polarity diode	-
-		Vbat	5.5	27	V	Battery voltage range	Ref 1; 7.3. Recommended Operating Conditions	Pass
3.	Param 11	Vsup_non_op	≤ -0.3	≥ 40.0	V	Voltage range within which the device is not destroyed; no guarantee of correct operation.	All devices	-
-		VBAT	-0.3	58	V	Supply voltage range	Ref 1; 7.1. Absolute Maximum Ratings	Pass
4.	Param 82	V _{BUS_MAX_RATIN} gs	≤ -27.0	≥ 40.0	V	The part should not suffer any damage	All devices	-
-		VLIN	-58	58	V	LIN bus voltage range	Ref 1; 7.1. Absolute Maximum Ratings	Pass
5.	Param 12	Ibus_lim ^c	≥ 40	≤ 200	mA	Current limitation for driver dominant state driver on V _{BUS} = V _{BAT_max} ^d	All devices with integrated LIN transmitter	-
-		Ibus_lim	40	100	mA	Driver output current limitation @dominant	Ref 1; 7.5.8 LIN	Pass

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
6.	Param 13	BUS_PAS_dom	≥ -1	-	mA	Input leakage current at the Receiver incl. slave pull–up resistor as specified in Param 71 driver off $V_{BUS} = 0V$ $V_{BAT} = 12V$	All devices with integrated slave pull–up resistor	-
-		IBUS_PAS_dom	-600		μΑ	Receiver input leakage current@ dominant Normal mode; V _{TXD} = 5V; V _{LIN} = 0V; V _{BAT} = 12V	Ref 1; 7.5.8 LIN	Pass
7.	Param 14	IBUS_PAS_rec	-	≤ 20	μA	driver off 8V <v<sub>BAT<18V 8V<v<sub>BUS<18V V_{BUS} ≥ V_{BAT}</v<sub></v<sub>	All devices	-
-		IBUS_PAS_rec		20	μA	Receiver input leakage current@ recessive V _{TXD} =5V; V _{LIN} =27V; V _{BAT} =5.5V	Ref 1; 7.5.8 LIN	Pass
8.	Param 15	Ibus_no_gnd	≥ -1	≤ 1	mA	Control unit disconnected from ground GND _{Device} = V_{SUP} $0V < V_{BUS} < 18V$ $V_{BAT} = 12V$ Loss of local ground shall not affect communication in the residual network.	All devices	-
-		Ibus_no_gnd	-750	10	μA	Bus current @ loss ground V _{BAT} =27V; V _{LIN} = 0V	Ref 1; 7.5.8 LIN	Pass

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
9.	Param 16	I _{BUS_NO_BAT}	-	≤ 100	μΑ	V_{BAT} disconnected $V_{SUP} = GND$ $0 < V_{BUS} < 18V$ Node shall sustain the current that can flow under this condition. Bus shall remain operational under this condition.	All devices	-
-		IBUS_NO_BAT		10	μA	Bus current @ loss battery $V_{BAT}=0V; V_{LIN}=27V$	Ref 1; 7.5.8 LIN	Pass
10.	Param 17	$V_{\text{BUS}_\text{dom}}$	-	≥ 0.4	V_{SUP}	Receiver dominant state	All devices with integrated LIN receiver	-
-		VBUSdom		0.4Vbat	V	LIN receiver dominant state	Ref 1; 7.5.8 LIN	Pass
11.	Param 18	$V_{\text{BUS_rec}}$	≤ 0.6	-	V _{SUP}	Receiver recessive state	All devices with integrated LIN receiver	-
-		VBUSrec	0.6уват		V	LIN receiver recessive state	Ref 1; 7.5.8 LIN	Pass
12.	Param 19	VBUS_CNT	≥ 0.475	≤ 0.525	VSUP	$V_{BUS_CNT} = (V_{th_dom} + V_{th_rec})/2 e$	All devices with integrated LIN receiver	-
-		VBUS_CNT	0.45 V _{BAT}	0.55 V _{ВАТ}	V	LIN receiver center threshold $V_{BUS_{CNT}} = (V_{BUS_{dom}} + V_{BUS_{rec}})/2$	Ref 1; 7.5.8 LIN	Pass
13.	Param 20	V _{HYS}	-	≤ 0.175	V _{SUP}	VHYS = Vth_rec ⁻ Vth_dom	All devices with integrated LIN receiver	-
-		VHYS		0.175 Vbat	V	LIN receiver hysteresis voltage V _{HYS} = V _{BUSrec} -V _{BUSdom}	Ref 1; 7.5.8 LIN	Pass

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
14.	Param 27	D1	≥ 0.396	-	-	$\begin{split} TH_{\text{Rec}(\text{max})} &= 0.744 \text{ x V}_{\text{SUP}}; \\ TH_{\text{Dom}(\text{max})} &= 0.581 \text{ x V}_{\text{SUP}}; \\ V_{\text{SUP}} &= 7.0 \text{V}18 \text{V}; \ t_{\text{BIT}} = 50 \mu\text{s}; \\ D1 &= t_{\text{Bus}_\text{rec}(\text{min})} / (2 \text{ x t}_{\text{BIT}}) \end{split}$	All devices with integrated LIN transmitter D1 valid for 20 kbit/s	-
-		δ1	0.396			Duty cycle 1 V _{th(rec)(max)} =0.744xV _{BAT} ; V _{th(dom)(max)} =0.581xV _{BAT} ; t _{bit} =50µs; V _{BAT} =7V~18V	Ref 1; 7.5.10. Duty cycle	Pass
15.	Param 28	D2	-	≤ 0.581		$\begin{split} TH_{\text{Rec}(\text{min})} &= 0.422 \text{ x V}_{\text{SUP}}; \\ TH_{\text{Dom}(\text{min})} &= 0.284 \text{ x V}_{\text{SUP}}; \\ V_{\text{SUP}} &= 7.6V \dots 18V; \ t_{\text{BIT}} = 50 \mu \text{s}; \\ D2 &= t_{\text{Bus}_\text{rec}(\text{max})} / (2 \text{ x t}_{\text{Bit}}) \end{split}$	all devices with integrated LIN transmitter D2 valid for 20kBaud	-
-		δ2		0.581		Duty cycle 2 V _{th(rec)(min)} =0.422xV _{BAT} ; V _{th(dom)(min)} =0.284xV _{BAT} ; t _{bit} =50µs; V _{BAT} =7.6V~18V	Ref 1; 7.5.10. Duty cycle	Pass
16.	Param 29	D3	≥ 0.417	-		$\begin{split} TH_{\text{Rec}(\text{max})} &= 0.778 \text{ x V}_{\text{SUP}}; \\ TH_{\text{Dom}(\text{max})} &= 0.616 \text{ x V}_{\text{SUP}}; \\ V_{\text{SUP}} &= 7.0 \text{V}_{\dots} 18 \text{V}; t_{\text{BIT}} = 96 \mu \text{s}; \\ D3 &= t_{\text{Bus}_\text{rec}(\text{min})} / (2 \text{ x } t_{\text{BIT}}) \end{split}$	All devices with integrated LIN transmitter D3 valid for 10,417 kbit/s	-
-		δ3	0.417			Duty cycle 3 V _{th(rec)(max)} =0.778xV _{BAT} ; V _{th(dom)(max)} =0.616xV _{BAT} ; t _{bit} =96µs; V _{BAT} =7V~18V	Ref 1; 7.5.10. Duty cycle	Pass
17.	Param 30	D4	-	≤ 0.590		$\begin{split} TH_{\text{Rec}(\text{min})} &= 0.389 \text{ x } V_{\text{SUP}}; \\ TH_{\text{Dom}(\text{min})} &= 0.251 \text{ x } V_{\text{SUP}}; \\ V_{\text{SUP}} &= 7.6V18V; \ t_{\text{BIT}} = 96 \mu\text{s}; \\ D4 &= t_{\text{Bus}_\text{rec}(\text{max})} / (2 \text{ x } t_{\text{BIT}}) \end{split}$	All devices with integrated LIN transmitter D4 valid for 10,417 kbit/s	-

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
-		δ4		0.590		Duty cycle 4 Vth(rec)(min)=0.389xVBAT; Vth(dom)(min)=0.251xVBAT; tbit=96µs; VBAT=7.6V~18V	Ref 1; 7.5.10. Duty cycle	Pass
18.	Param 31	t _{rx_pd}	-	≤ 6	μs	Propagation delay of receiver	All devices with integrated LIN receiver	-
-		t _{P(RX)}		6	μs	RXD propagation delay, Rise and fall	Ref 1; 7.5.11. Switching Characteristics	Pass
19.	Param 32	t _{rx_sym}	≥ -2	≤ 2	μs	Symmetry of receiver propagation delay rising edge with respect to falling edge	All devices with integrated LIN receiver	-
-		t _{P(RX)sym}	-2	2	μs	RXD propagation delay symmetry	Ref 1; 7.5.11. Switching Characteristics	Pass
20.	Param 26	Rslave	≥ 20	≤ 60	kΩ	The serial diode is mandatory.	All devices with integrated slave pull–up resistor	-
-		R _{slave}	20	47	kΩ	Slave resistance Resistance between LIN and V _{BAT} ; $V_{LIN} = 0V$; $V_{BAT} = 12V$	Ref 1; 7.5.8 LIN	Pass
21.	Param 25	Rmaster	≥ 900	≤ 1100	Ω	The serial diode is mandatory. Only for valid for transceiver with integrated master pull–up resistor	All devices with integrated master pull–up resistor	-
-								Not applicable No master
22.	Param 37	CSLAVE	-	≤ 250	pF	Capacitance of slave node	All LIN slave devices	-

no.	reference	parameter	min	max	unit	comment/condition	valid for, reference	result
-								Not applicable No slave
23.	6.3.7.1 General	LIN device states changes	-	-	-	All LIN device state changes on conditional events (e.g. temperature shut–down) shall be specified in the LIN device data sheet.	All devices	-
-		T _{jsd(sd)}	160	200	°C	Thermal shutdown temperature	Ref 1; 7.5.9. Thermal Shutdown	Pass
-		$\mathbf{t}_{to(dom)TXD}$	27	90	ms	TXD-dominant timeout V _{TXD} = 0V	Ref 1; 7.5.11. Switching Characteristics	Pass
24.		LIN transceiver input capacitance	-	-	-	A maximum LIN transceiver input capacitance shall be specified in the LIN device data sheet. Please consider the data sheet limits (e.g. voltage, temperature).	All devices	-
-		CLIN		30	pF	Capacitance on LIN pin	Ref 1; 7.5.8 LIN	Pass

^a VBAT denotes the supply voltage at the connector of the control unit and may be different from the internal supply VsuP for electronic components (see ISO 17987-4 subclause 5.3.2). ^b VsuP denotes the supply voltage at the transceiver inside the control unit and may be different from the external supply VBAT for control units (see ISO 17987-4 subclause 5.3.2). ^c IBUS: Current flowing into the node.

^d A transceiver shall be capable to sink at least 40mA. The maximum current flowing into the node shall not exceed 200 mA under DC conditions to avoid possible damage. ^e Vth_dom: receiver threshold of the recessive to dominant LIN bus edge. Vth_rec: receiver threshold of the dominant to recessive LIN bus edge.

6 Test Protocol Dynamic Tests

Following test case numeration and cross references relates on the corresponding test specification.

5.2 Operational conditions – Calibration

5.2.2 [EPL-CT 1] Operating voltage range

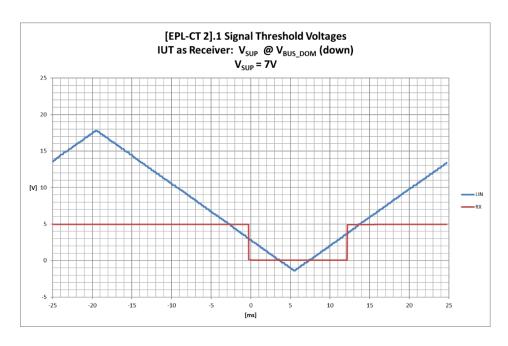
This test shall ensure the correct operation in the valid supply voltage ranges, by correct reception of dominant bits. The IUT is therefore supplied with an increasing/decreasing voltage ramp.

[EPL-CT 1].1 [7.0 V to 18 V]

Comment	Test Result
Observed minimal Duty Cycle	50.00%
Observed maximal Duty Cycle	50.10%
The RX pin of the IUT shall show the 10 kHz signal. A maximum deviation of 10 % (time, voltage) is allowed.	Pass

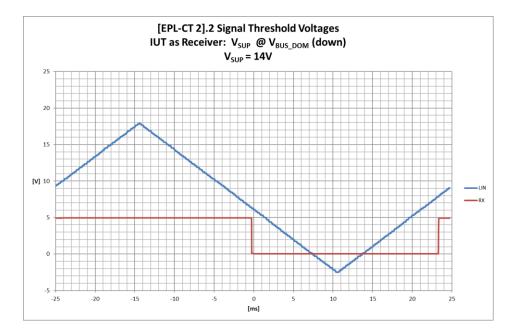
[EPL-CT 1].2 [18 V to 7.0 V]

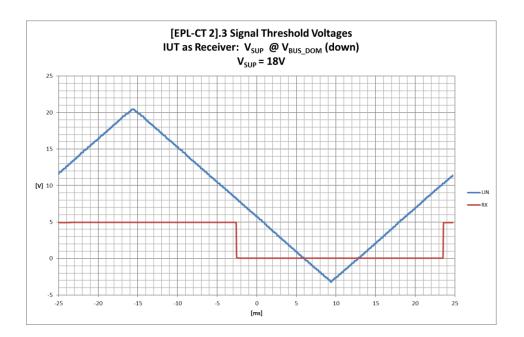
Comment	Test Result
Observed minimal Duty Cycle	50.00%
Observed maximal Duty Cycle	50.10%
The RX pin of the IUT shall show the 10 kHz signal. A maximum deviation of 10 % (time, voltage) is allowed.	Pass



5.2.3 Threshold voltages

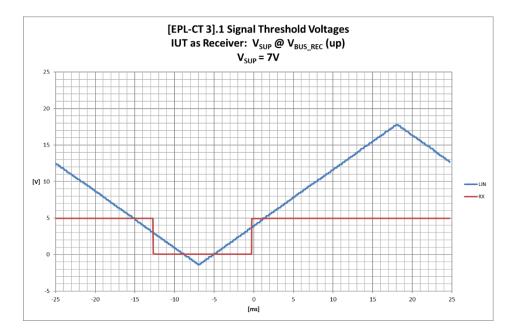
This group of tests checks whether the receiver threshold voltages of the IUT are implemented correctly within the entire specified operating supply voltage range. The LIN bus voltage is driven with a voltage ramp checking the entire dominant and recessive signal area with respect to the applied supply voltage. In 5.2.3.2 and 5.2.3.3 the signal shall stay continuously on recessive or dominant level depending on the test case. In 5.2.3.4 the RX output transition is detected.


EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
	7V	[18V to 4.2V]	recessive	recessive
[EPL-CT 2].1	7 V	[2.8V to -1.05V]	dominant	dominant

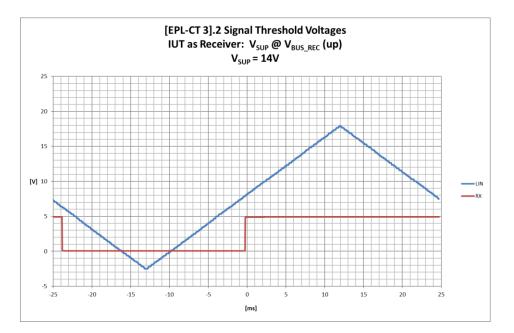


EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
	14V	[18V to 8.4V]	recessive	recessive
[EPL-CT 2].2		[5.6V to -2.1V]	dominant	dominant

EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
[EPL-CT 2].3	18V	[20.7V to 10.8V]	recessive	recessive
		[7.2V to -2.7V]	dominant	dominant

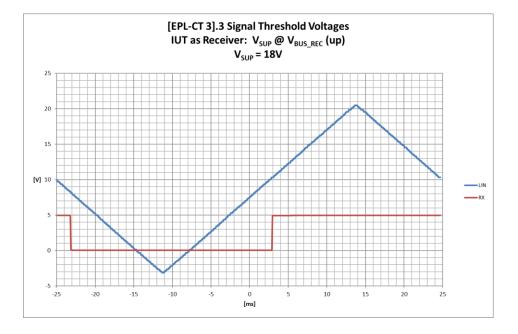


Comment	Test Result
The IUT shall generate a dominant or recessive value on RX as defined during the falling slope of the triangle signal.	Pass



EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
	7\/	[-1.05V to 2.8V]	dominant	dominant
[EPL–CT 3].1	7V	[4.2 V to 18 V]	recessive	recessive

5.2.3.3 [EPL-CT 3] IUT as receiver: Vsup @ VBUS_dom (up)



EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
[EPL-CT 3].2	14V	[-2.1 V to 5.6 V]	dominant	dominant
		[8.4 V to 18 V]	recessive	recessive

EPL-CT-TC	VIUT: [VSUP]	Signal range	Expected RX signal	Measured RX Signal
	18V	[-2.7V to 7.2V]	dominant	dominant
[EPL-CT 3].3		[10.8V to 20.7V]	recessive	recessive

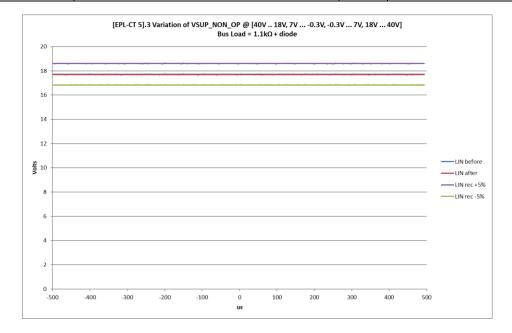
Comment	Test Result
The IUT shall generate a dominant or recessive value on RX as defined during the rising slope of the triangle signal.	Pass

5.2.3.4 [EPL-CT 4] IUT as receiver: VSUP @VBUS

This test shall verify the symmetry of the receiver thresholds. For this purpose a voltage ramp on V_{BUS} shows the required threshold values.

EPL-CT-TC	VIUT: [VSUP]	Signal range up	Signal range down
[EPL-CT 4].1	7V	[-1.05V to 8.05V]	[8.05V to -1.05V]
	V_th_dom	3.281 V	-
	V_th_rec	-	3.969 V
	V_hys	0.688 V	
	V_bus_cnt	3.625 V	

EPL-CT-TC	VIUT: [VSUP]	Signal range up	Signal range down
[EPL-CT 4].2	14V	[-2.1V to 16.1V]	[16.1 V to -2.1V]
	V_th_dom	6.500 V	-
	V_th_rec	-	8.125 V
	V_hys	1.625 V	
	V_bus_cnt	7.313 V	

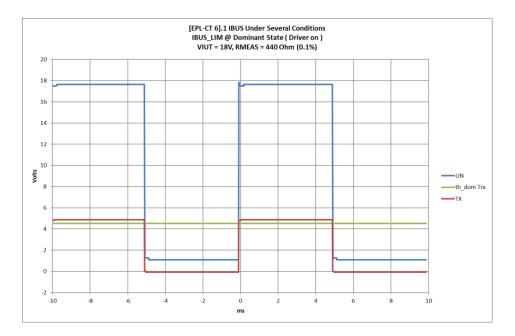

EPL-CT-TC	VIUT: [VSUP]	Signal range up	Signal range down
[EPL-CT 4].3	18V	[-2.7V to 20.7V]	[20.7V to -2.7V]
	V_th_dom	8.375 V	-
	V_th_rec	-	10.500 V
	V_hys	2.125 V	
	V_bus_cnt	9.438 V	

Comment	Test Result
The RX output of the IUT shall switch from dominant to recessive when the LIN bus voltage ramps up and it shall switch from recessive to dominant when the LIN bus voltage ramps down. The RX output transition shall meet the following conditions: VBUS_CNT = (Vth_dom + Vth_rec)/2 in the range of [0.475 to 0.525] x VSUP VHYS = Vth_rec - Vth_dom shall be less than 0.175 x VSUP	Pass

5.2.4 [EPL-CT 5] Variation of VSUP_NON_OP

EPL-CT-TC	V _{IUT} range: [V _{SUP} range]	V _{PS2}	Bus load
[EPL-CT 5].3	[-0.3 V to 7 V], [18 V to 40 V]	18V	1.1 k + diode (1N4148)

Comment	Test Result
No dominant state on LIN shall occur. The IUT shall not be destroyed during the test. The afterward recessive voltage shall have a maximum deviation of ±5 % from the before recessive voltage.	Pass



5.2.5 IBUS under several conditions

5.2.5.1 [EPL-CT 6] IBUS_LIM @ dominant state (driver on)

This test checks the drive capability of the output stage. A LIN driver shall pull the LIN bus below a certain voltage according to the LIN standard. The current limitation is measured indirectly.

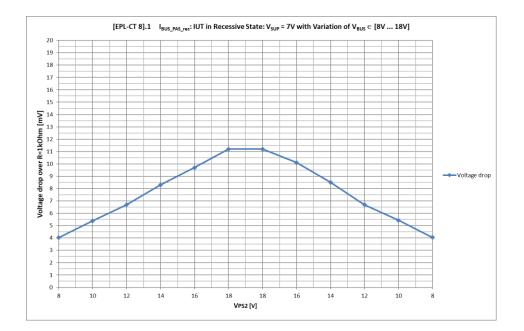
EPL-CT-TC	VIUT: [VSUP]	R _{MEAS}
[EPL-CT 6].1	18V	440Ω (0.1%)

Comment	Test Result
LIN shall show the rectangular Signal.	Pass
The dominant state bus level shall be lower than $TH_DOM = 0.251 \text{ x V}_{IUT} = 4.518 \text{ V}$ for transceiver.	1 400

5.2.5.2 [EPL-CT 7] IBUS_PAS_dom: IUT in recessive state: VBUS = 0 V

This test case is intended to test the input Leakage Current IBUS_PAS_dom into a node during dominant state of the LIN bus.

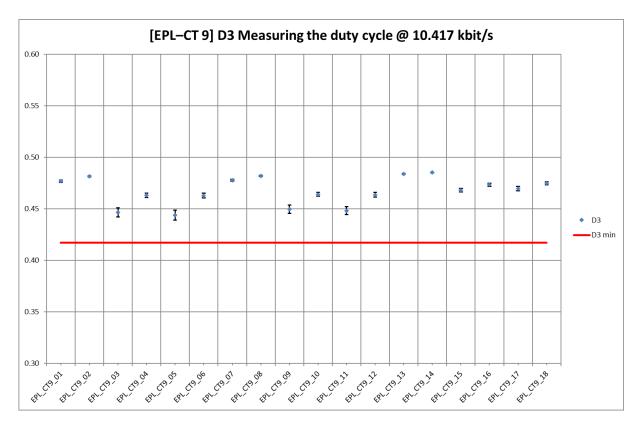
EPL-CT-TC	VIUT: [VSUP]	R _{MEAS}	Measured voltage drop
[EPL-CT 7].1	12V	499Ω (0.1%)	-216 mV

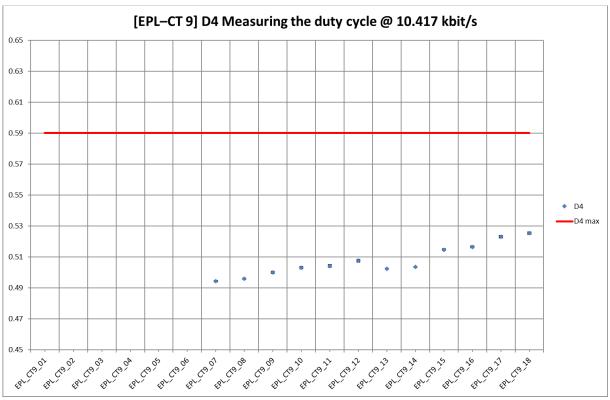

Comment	Test Result
The maximum value of voltage drop shall be higher than -500 mV.	Pass

5.2.5.3 [EPL–CT 8] IBUS_PAS_rec: IUT in recessive state: VSUP = 7.0 V with variation of VBUS ∈ [8.0 V to 18 V]

The [EPL–CT 8].1 is checking, whether there is a diode implementation within the termination path of the IUT. The reverse current should be limited to $I_{BUS_PAS_rec}$ (Max) from the LIN wire into the IUT even if V_{BUS} is higher than the IUTs supply voltage V_{IUT}.

EPL-CT-TC	VIUT: [VSUP]	R _{MEAS}
[EPL-CT 8].1	7V	1000Ω (0.1%)


Comment	Test Result
The maximum value of voltage drop shall be less or equal 20 mV.	Pass



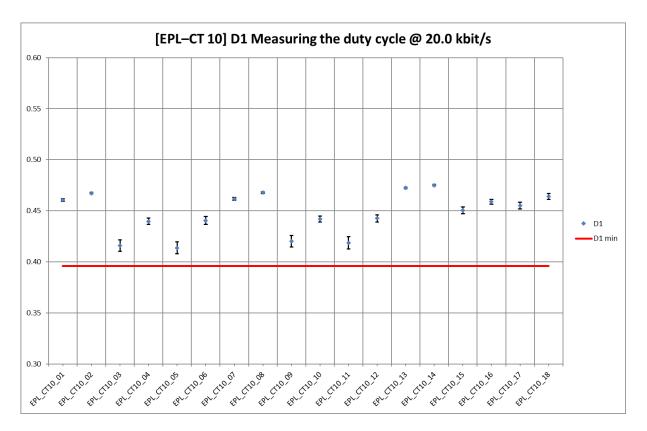
5.2.6 Slope control

Purpose of this test is checking the duty cycle of the driver stage.

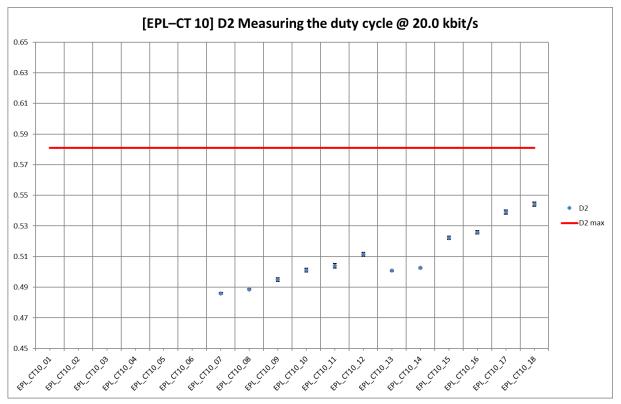
5.2.6.2 [EPL–CT 9] Measuring the duty cycle @ 10.417 kbit/s – IUT as transmitter

EPL-CT-TC	V _{IUT} : [V _{SUP}] (PS 1)	V _{PS2} (PS 2)	Bus loads (CBUS; RBUS)	Duty cycle		
				D3 ±U*	D4 ±U [*]	Result
[EPL-CT 9].1	7.0V	6.0V	1nF (1%); 1kΩ (0.1%)	0.477 ±0.001	_	Pass
[EPL-CT 9].2	7.0V	6.6V	1nF (1%); 1kΩ (0.1%)	0.481 ±0.001	_	Pass
[EPL-CT 9].3	7.0V	6.0V	6.8nF (1%); 660 Ω (0.1%)	0.446 ±0.004	_	Pass
[EPL-CT 9].4	7.0V	6.6V	6.8nF (1%); 660 Ω (0.1%)	0.463 ±0.002	_	Pass
[EPL-CT 9].5	7.0V	6.0V	10nF (1%); 500 Ω (0.1%)	0.444 ±0.005	_	Pass
[EPL-CT 9].6	7.0V	6.6V	10nF (1%); 500 Ω (0.1%)	0.463 ±0.002	_	Pass
[EPL-CT 9].7	7.6V	6.6V	1nF (1%); 1kΩ (0.1%)	0.478 ±0.001	0.494 ±0.00	Pass
[EPL-CT 9].8	7.6V	7.2V	1nF (1%); 1kΩ (0.1%)	0.482 ±0.001	0.496 ±0.00	Pass
[EPL-CT 9].9	7.6V	6.6V	6.8nF (1%); 660 Ω (0.1%)	0.450 ±0.004	0.500 ±0.001	Pass
[EPL-CT 9].10	7.6V	7.2V	6.8nF (1%); 660 Ω (0.1%)	0.464 ±0.002	0.503 ±0.001	Pass
[EPL-CT 9].11	7.6V	6.6V	10nF (1%); 500 Ω (0.1%)	0.448 ±0.004	0.504 ±0.001	Pass
[EPL-CT 9].12	7.6V	7.2V	10nF (1%); 500 Ω (0.1%)	0.464 ±0.002	0.508 ±0.001	Pass
[EPL-CT 9].13	18V /	17.0V	1nF (1%); 1kΩ (0.1%)	0.484 ±0.00	0.502 ±0.00	Pass
[EPL-CT 9].14	18V	17.6V	1nF (1%); 1kΩ (0.1%)	0.485 ±0.00	0.504 ±0.00	Pass
[EPL-CT 9].15	18V	17.0V	6.8nF (1%); 660 Ω (0.1%)	0.468 ±0.002	0.515 ±0.001	Pass
[EPL-CT 9].16	18V	17.6V	6.8nF (1%); 660 Ω (0.1%)	0.473 ±0.001	0.516 ±0.00	Pass
[EPL-CT 9].17	18V	17.0V	10nF (1%); 500 Ω (0.1%)	0.469 ±0.002	0.523 ±0.001	Pass
[EPL-CT 9].18	18V	17.6V	10nF (1%); 500 Ω (0.1%)	0.475 ±0.002	0.525 ±0.001	Pass

Comment	Test Result
The measured duty cycle D3 shall be greater or equal than 0.417 for $V_{SUP} = [7.0 \text{ V to } 18 \text{ V}]$, the measured duty cycle D4 shall be less or equal than 0.590 for $V_{SUP} = [7.6 \text{ V to } 18 \text{ V}]$.	Pass
If V_{SUP} is not accessible then $V_{BAT} - 0.7$ V shall be used for calculation of the duty cycle.	



^{*}The measurement uncertainty analysis based on the type B evaluation according to the "Guide to the Expression of Uncertainty in Measurement" (European Committee for Standardization, ENV 13005, 1999).


The steps involved are as follows:

- 1. Evaluation of the relationship between input quantities xi and the output quantity $y = f(x_1, x_2, ..., x_n)$
- 2. Identification of the standard uncertainty $u(x_i)$ for each input estimate x_i
- 3. Identification of the combined standard uncertainty $u_c(x_i)$ for the output quantity y
- 4. Calculation of the expanded uncertainty $U = k \cdot u_c(x_i)$, with coverage factor k=2. The coverage probability is approximately 95%.

5.2.6.3 [EPL-CT 10] Measuring the duty cycle @ 20.0 kbit/s - IUT as transmitter

	V _{IUT} :	V _{PS2}	Bus loads	Duty o	cycle	
EPL-CT-TC	[V _{SUP}] (PS 1)	(PS 2)	(CBUS; RBUS)	D1 ±U [*]	D2 ±U [*]	Result
[EPL-CT 10].1	7.0V	6.0V	1nF (1%); 1kΩ (0.1%)	0.461 ±0.001	_	Pass
[EPL-CT 10].2	7.0V	6.6V	1nF (1%); 1kΩ (0.1%)	0.467 ±0.001	_	Pass
[EPL-CT 10].3	7.0V	6.0V	6.8nF (1%); 660 Ω (0.1%)	0.416 ±0.006	_	Pass
[EPL-CT 10].4	7.0V /	6.6V	6.8nF (1%); 660 Ω (0.1%)	0.440 ±0.003	_	Pass
[EPL-CT 10].5	7.0V	6.0V	10nF (1%); 500 Ω (0.1%)	0.414 ±0.006	_	Pass
[EPL-CT 10].6	7.0V	6.6V	10nF (1%); 500 Ω (0.1%)	0.441 ±0.004	_	Pass
[EPL-CT 10].7	7.6V	6.6V	1nF (1%); 1kΩ (0.1%)	0.462 ±0.001	0.486 ±0.001	Pass
[EPL-CT 10].8	7.6V	7.2V	1nF (1%); 1kΩ (0.1%)	0.468 ±0.001	0.489 ±0.00	Pass
[EPL-CT 10].9	7.6V	6.6V	6.8nF (1%); 660 Ω (0.1%)	0.420 ±0.006	0.495 ±0.001	Pass
[EPL-CT 10].10	7.6V	7.2V	6.8nF (1%); 660 Ω (0.1%)	0.442 ±0.003	0.501 ±0.001	Pass
[EPL-CT 10].11	7.6V	6.6V	10nF (1%); 500 Ω (0.1%)	0.419 ±0.006	0.504 ±0.001	Pass
[EPL-CT 10].12	7.6V	7.2V	10nF (1%); 500 Ω (0.1%)	0.443 ±0.004	0.512 ±0.001	Pass
[EPL-CT 10].13	18V	17.0V	1nF (1%); 1kΩ (0.1%)	0.472 ±0.001	0.501 ±0.001	Pass
[EPL-CT 10].14	18V	17.6V	1nF (1%); 1kΩ (0.1%)	0.475 ±0.001	0.503 ±0.001	Pass
[EPL-CT 10].15	18V	17.0V	6.8nF (1%); 660 Ω (0.1%)	0.450 ±0.003	0.522 ±0.001	Pass
[EPL-CT 10].16	18V	17.6V	6.8nF (1%); 660 Ω (0.1%)	0.459 ±0.002	0.526 ±0.001	Pass
[EPL-CT 10].17	18V	17.0V	10nF (1%); 500 Ω (0.1%)	0.455 ±0.003	0.539 ±0.001	Pass
[EPL-CT 10].18	18V	17.6V	10nF (1%); 500 Ω (0.1%)	0.464 ±0.003	0.544 ±0.001	Pass

Co

Comment	Test Result
The measured duty cycle D1 shall be greater or equal than 0.396 for $V_{SUP} = [7.0 V \text{ to } 18 V]$, the measured duty cycle D2 shall be less or equal than 0.581 for $V_{SUP} = [7.6 V \text{ to } 18 V]$.	Pass

If Vsup is not accessible then $V_{BAT} - 0.7$ V shall be used for calculation of the duty cycle.

^{*}The measurement uncertainty analysis based on the type B evaluation according to the "Guide to the Expression of Uncertainty in Measurement" (European Committee for Standardization, ENV 13005, 1999).

The steps involved are as follows:

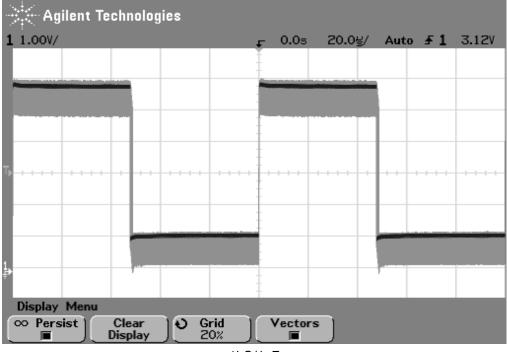
- 1. Evaluation of the relationship between input quantities xi and the output quantity $y = f(x_1, x_2, ..., x_n)$
- 2. Identification of the standard uncertainty $u(x_i)$ for each input estimate x_i
- 3. Identification of the combined standard uncertainty $u_c(x_i)$ for the output quantity y
- 4. Calculation of the expanded uncertainty $U = k \cdot u_c(x_i)$, with coverage factor k=2. The coverage probability is approximately 95%.

5.2.7 Propagation delay

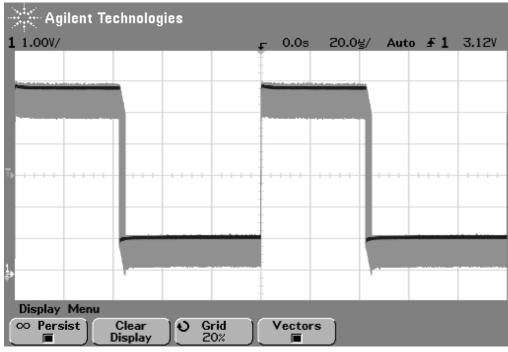
The following test checks the receiver's internal delay and its symmetry. The method for measuring the values is shown in ISO 17987–4 Figure 5 subclause 5.3.3.

5.2.7.2 [EPL-CT 11] Propagation delay of the receiver

EPL-CT-TC	VIUT: [VSUP]	RX Load	t _{rx_pdf}	t _{rx_pdr}	t _{rx_pd}	t _{rx_sym}
EPL-CT 11].1	7V	20pF, 2.4kΩ	0.740 µs	1.400 µs	1.400 µs	-0.660 µs
EPL-CT 11].2	14V	20pF, 2.4kΩ	0.495 µs	1.000 µs	1.000 µs	-0.505 µs
EPL-CT 11].3	18V	20pF, 2.4kΩ	0.440 µs	0.895 µs	0.895 µs	-0.455 µs

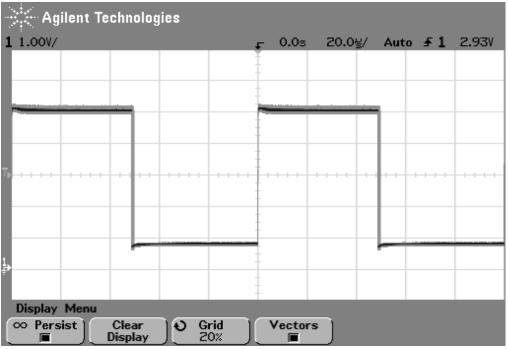

Comment	Test Result
The measured time t_{rx_pd} shall be less than 6 µs.	David
$t_{rx_sym} = t_{rx_pdf} - t_{rx_pdr}$ shall be in the range -2 to +2 µs.	Pass

5.2.8 Supply voltage offset


The purpose of the test is to check the robustness in case of V_{BAT} and Ground shift.

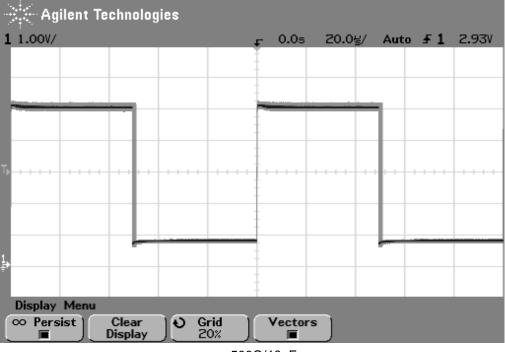
5.2.8.3 [EPL–CT 12] GND shift test – Dynamic – IUT as class A device IUT as receiver

IUT as receiver



500Ω/10nF

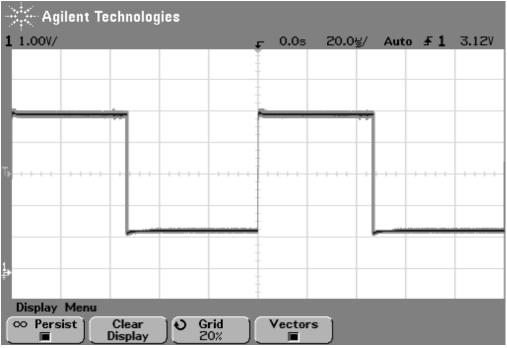
Comment	Test Result
Observed Duty Cyle Range $1k\Omega/1nF$	47.6% – 48.8%
Observed Duty Cyle Range 500 Ω /10nF	42.6% - 45.0%
The duty cycle measured at RXD2 shall be in the range of 0.376 to 0.601 (D1 – 2 μ s to D2 + 2 μ s).	Pass



5.2.8.4 [EPL–CT 13] GND shift test – Dynamic – IUT as class A device IUT as transmitter

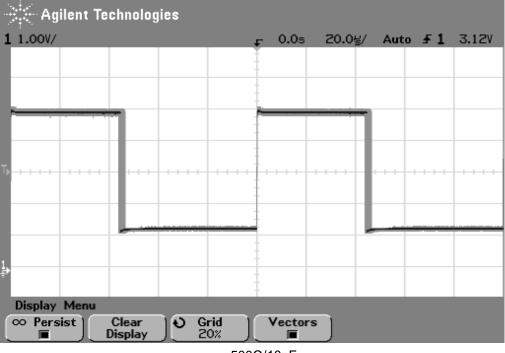
1kΩ/1nF

IUT as transmitter



500Ω/10nF

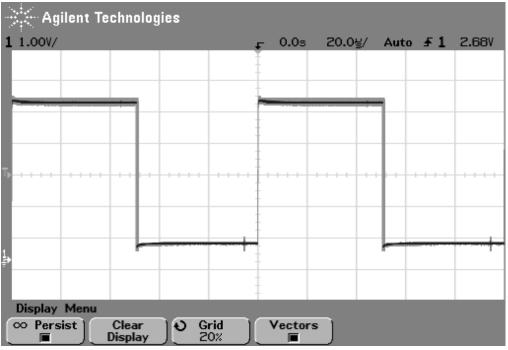
Comment	Test Result
Observed Duty Cyle Range $1k\Omega/1nF$	48.8% - 49.8%
Observed Duty Cyle Range $500\Omega/10nF$	49.6% – 51.0%
The duty cycle measured at RXD2 shall be in the range of 0.376 to 0.601 (D1 – 2 μ s to D2 + 2 μ s).	Pass



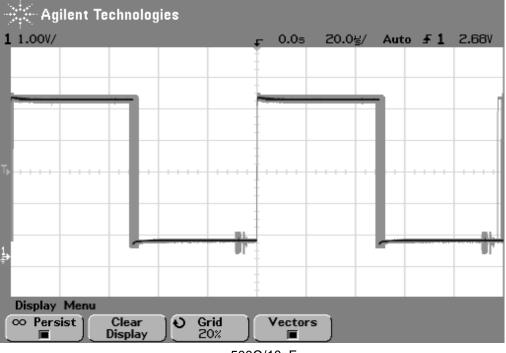
5.2.8.5 [EPL–CT 14] V_{BAT} shift test – Dynamic – IUT as class A device IUT as transmitter

1kΩ/1nF

IUT as transmitter



Comment	Test Result
Observed Duty Cyle Range 1k Ω /1nF	46.3% - 47.4%
Observed Duty Cyle Range 500 Ω /10nF	44.1% – 46.6%
The duty cycle measured at RXD2 shall be in the range of 0.376 to 0.601 (D1 – 2 μ s to D2 + 2 μ s).	Pass



5.2.8.6 [EPL–CT 15] VBAT shift test – Dynamic – IUT as class A device IUT as receiver

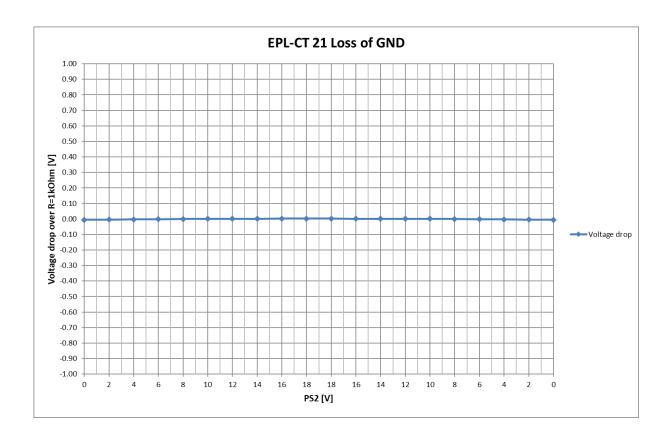
1kΩ/1nF

IUT as receiver

500Ω/10nF

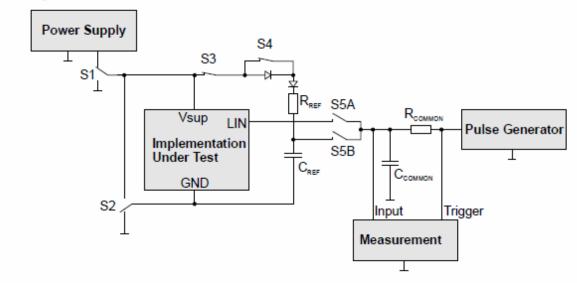
Comment	Test Result
Observed Duty Cyle Range $1k\Omega/1nF$	50.5% – 51.5%
Observed Duty Cyle Range 500 Ω /10nF	49.1% – 50.8%
The duty cycle measured at RXD2 shall be in the range of 0.376 to 0.601 (D1 – 2 μ s to D2 + 2 μ s).	Pass

5.2.9 Failure

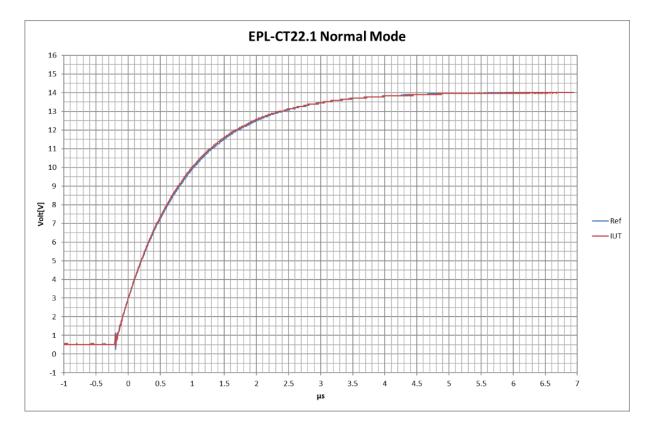

Purpose of this test is to check, whether some parasitic reverse currents are flowing into the IUT.

5.2.9.2 [EPL-CT 20] Loss of Battery

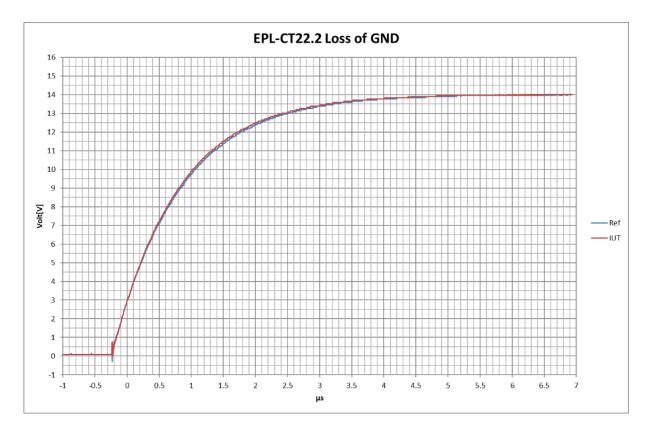
Comment	Test Result
During all test, no parasitic current paths shall be formed between the bus line and the IUT. IBUS shall be less than 100 μ A, means 1 V voltage drop over R=10 k Ω . After reconnecting battery line, the IUT shall restart after failure recovery.	Pass


Comment	Test Result
During all test, no parasitic current paths shall be formed between the bus line and the IUT. IBUS shall be included in ± 1 mA, means 1 V voltage drop over R=1 k Ω . After reconnecting ground line: The IUT shall restart after failure recovery.	Pass

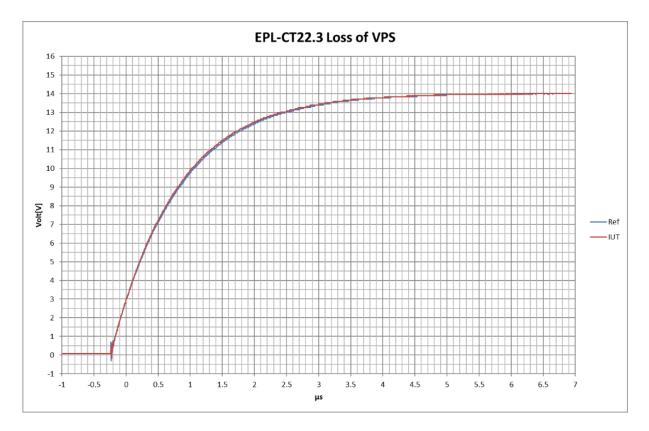
5.2.10 [EPL–CT 22] Verifying internal capacitance and dynamic interference – IUT as slave


Purpose of this test is checking the internal capacitance of the IUT under normal and fault conditions. The IUT shall not interfere dynamically with bus signals when it is in passive (non-transmitting) or unpowered state.

Test Configuration:



EPL-CT-TC	Condition	Result
	Normal power supply IUT shall be in normal mode.	
[EPL-CT 22].1	T _{INT}	0.985 µs
	Tref	1.010 µs



EPL-CT-TC	Condition	Result
	IUT loss of GND (IUT GND shorted to power supply).	
[EPL-CT 22].2	Tint	1.015 µs
	Tref	1.045 µs

EPL-CT-TC	Condition	Result
[EPL-CT 22].3	IUT loss of VPs (IUT VIUT: [VSUP / VBAT] shorted to GND).	
	TINT	1.015 µs
	Tref	1.045 µs

Comment	Test Result
CsLave shall be less or equal than 250 pF: TINT ≤ TREF. The IUT shall not interfere with the dynamic stimulus.	Pass

5.3 Operation Mode Termination

5.3.2 [EPL-CT 23] Measuring internal resistor - IUT as slave

Test parameter			
VIUT: [VSUP]	14V		
R _{meas1}	10k (0.1%)		
R _{meas2}	20k (0.1%)		

	Imeas	V _{meas}	R _{meas}
10k	0.348 mA	3.486 V	10006 Ω
20k	0.276 mA	5.530 V	20007Ω
		RINT	28372 Ω

Comment	Test Result
RINT value shall be included in the range [20 k Ω ; 60 k Ω]	Pass

