

CA-IS3541 High-Speed Four-Channel Digital Isolators

1. Features

- Meets IR46 Physical Layer Standards
- Data Rate is up to 10Mbps

• Robust Galvanic Isolation of Digital Signals

- High lifetime: >40 years
- Up to 5.0kV_{RMS} isolation rating
- ±150 kV/μs typical CMTI
- ±8kV Human body model ESD protection
- ±10 kV surge tolerant
- Schmitt trigger inputs for high noise immunity
- High electromagnetic immunity

Low Power Consumption

- 1.6mA per channel at 1Mbps with V_{DD} = 5.0V
- 2.5mA per channel at 10Mbps with V_{DD} = 5.0V
- Shutdown current is as low as 40 μA@5.0V

Best in Class Propagation Delay and Skew

- 10ns typical propagation delay
- 1ns pulse width distortion
- 2ns propagation delay skew (chip -to-chip)
- Enable Control Input with Internal Pull-up
- 2.375V to 5.5V Wide Operating Supply Voltage
- Wide Operating Temperature Range: -40°C to 125°C
- No Start-up Initialization Required
- Open-drain and Push-pull Output Options with Default Output High

RoHS-Compliant Package:

SOIC16(W) wide-body

Safety Regulatory Approvals

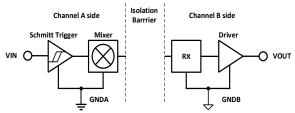
- VDE 0884-11 Reinforced Isolation (pending)
- UL According to UL1577
- IEC 62368-1, IEC 61010-1, GB 4943.1-2011 and GB 8898-2011 certifications

2. Applications

- Smart meters
- Data concentrators
- Circuit breakers

3. General Description

The CA-IS3541 is high-performance, low-power four-channel digital isolators specially developed for smart electricity meters (IR46). This family of devices features up to $\pm 10 \text{kV}$ surge tolerant and $\pm 8 \text{kV}$ HBM ESD protection. The digital isolator is based on Chipanalog's advanced isolation architecture with up to $\pm 5 \text{kV}_{RMS}$ isolation rating and $\pm 150 \text{kV}/\mu \text{s}$ CMTI, that provides a robust isolated data path between the different power domain and requires no special considerations or initialization at start-up. A simplified block diagram for a single CA-IS3541 channel is shown in the figure below.


The CA-IS3541 has 3 forward and 1 reverse-direction channels. All of devices in this family come with enable control pins which can be used to put the driver outputs in high-impedance for the multi-master driving applications. Also, for the CA-IS3541HWPA and CA-IS3541HWDA, enable control inputs can be used to put the device into shutdown mode to reduce power consumption as low as 40µA. The CA-IS3541 devices provide open-drain and push-pull output options with default output high, that means when the input is either not powered or is open-circuit, the default output is high level.

The CA-IS3541 family devices are specified over the -40°C to +125°C operating temperature range. They are available in 16-pin SOIC wide body package.

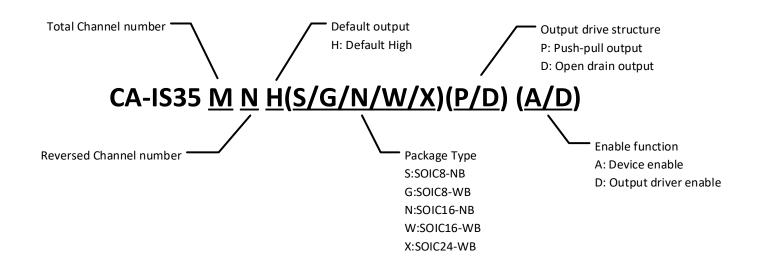
Device information

Part number	Package	Package size (NOM)
CA-IS3541	SOIC16-WB(W)	10.30 mm × 7.50 mm

Simplified Channel Structure

GNDA and GNDB are the isolated grounds for A side and B side respectively.

1



4. Ordering Information

Table 0-1. Ordering Information

Part Number	Number of Inputs A Side	Number of Inputs B Side	Output Type	Default Output	Isolation Rating (kV)	Output Enable	Package
CA-IS3541HWPD	3	1	Push-pull	High	5.0	Driver output enable control	SOIC16-WB
CA-IS3541HWPA	3	1	Push-pull	High	5.0	Device enable control	SOIC16-WB
CA-IS3541HWDD	3	1	Open-drain	High	5.0	Driver output enable control	SOIC16-WB
CA-IS3541HWDA	3	1	Open-drain	High	5.0	Device enable control	SOIC16-WB

5. Naming Rules

Contents

1.	Featu	res1	8.9.1. Supply Current Characteristics at 5.0V1
2.	Applic	cations1	8.9.2. Supply Current Characteristics at 3.3V
3.		ral Description1	8.9.3. Supply Current Characteristics at 2.5V
		•	8.10. Timing Characteristics1
4.		ing Information2	8.10.1. Timing Characteristics at 5.0V
5.	Namir	ng Rules2	8.10.2. Timing Characteristics at 3.3V
6.	Revisi	on History3	8.10.3. Timing Characteristics at 2.5V
7.	Pin Co	onfiguration and Functions4	9. Parameter Measurement Information13
8.	Specif	ications5	10. Detailed Description1
	8.1.	Absolute Maximum Ratings ¹ 5	10.1. Overview1
	8.2.	ESD Ratings5	10.2. Functional Block Diagram1
	8.3.	Recommended Operating Conditions5	10.3. Input and Output Equivalent Circuit1
	8.4.	Thermal Information6	10.4. Device Operation Modes10
	8.5.	Power Rating6	11. Application and Implementation18
	8.6.	Insulation Specifications7	11.1. Typical Operation Circuit1
	8.7.	Safety-Related Certifications8	11.2. Typical Application in IR46 Smart Meters 1
	8.8.	Electrical Characteristics9	12. Package Information20
	8.8.	.1. Electrical Characteristics at 5.0V9	13. Soldering Temperature (reflow) Profile2
	8.8.		14. Tape and Reel Information2
	8.8.	.3. Electrical Characteristics at 2.5V9	•
	8.9.	Supply Current Characteristics10	15. Important statement23

6. Revision History

Revision Number	Description	Page Changed
Preliminary Version	Initial version	N/A
Version A	Update Safety-Related Certifications	8 - 12
	Update Electrical Characteristics, leakage current maximum value	
Version B	Update part number	2
Version C	Changed tape data	20 - 21
version C	Added Soldering Temperature (reflow) Profile information	20 - 21
Version 1.00	Update document format	All
Version 1.01	Update POD	20

7. Pin Configuration and Functions

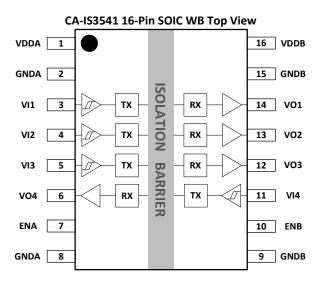


Figure 7-1. CA-IS3541 pin configuration

Table 7-1. CA-IS3541 pin description and function

CA-IS3541	Name	Туре	Description
1	VDDA	Supply	Power supply for side A.
2, 8	GNDA	Ground	Ground reference for side A.
3	VI1	Digital I/O	Digital input 1 on side A, corresponds to logic output 1 on side B.
4	VI2	Digital I/O	Digital input 2 on side A, corresponds to logic output 2 on side B.
5	VI3	Digital I/O	Digital input 3 on side A, corresponds to logic output 3 on side B.
6	VO4	Digital I/O	Digital output 4 on side A, VO4 is the logic output for the VI4 input on side B.
7	ENA	Digital I/O	Enable control input for side A, see Table 10-2 for more details.
9, 15	GNDB	Ground	Ground reference for side B.
10	ENB	Digital I/O	Enable control input for side B, see Table 10-2 for more details.
11	VI4	Digital I/O	Digital input 4 on side B, corresponds to logic output 4 on side A.
12	VO3	Digital I/O	Digital output 3 on side B, VO3 is the logic output for the VI3 input on side A.
13	VO2	Digital I/O	Digital output 2 on side B, VO2 is the logic output for the VI2 input on side A.
14	VO1	Digital I/O	Digital output 1 on side B, VO1 is the logic output for the VI1 input on side A.
16	VDDB	Supply	Power supply for side B.

8. Specifications

8.1. Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V_{DDA} , V_{DDB}	Power supply voltage ²	-0.5	7.0	V
V _{IN}	Input voltage at VI _x , EN _x	-0.5	V _{DDI} +0.5 ³	V
I ₀	Output current	-20	20	mA
T _J	Junction temperature	-40	150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not be exceed 7 V, V_{DDI} = Input-side supply V_{DD} .

8.2. ESD Ratings

	Parameters			
V _{ESD}	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹		±8000	V
Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²		±2000	V

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. JEDEC document JEP157, 250V HBM allows safe manufacturing of standard ESD control process.

8.3. Recommended Operating Conditions

	Parameters		MIN	Туре	MAX	Unit
V_{DDA} , V_{DDB}	Supply voltage on side A, B		2.375	3.30	5.50	V
V _{DD} (UVLO+)	V _{DD} Undervoltage-Lockout Threshold When Supply Voltage is Rising		1.95	2.24	2.375	V
V _{DD} (UVLO-)	V _{DD} Undervoltage-Lockout Threshold When Supply	Voltage is Falling	1.88	2.10	2.325	V
V _{HYS} (UVLO)	V _{DD} Undervoltage-Lockout Threshold Hysteresis		70	140	250	mV
		$V_{DDO}^1 = 5V$	-4			
I _{OH}	High-level Output Current	$V_{DDO}^{1} = 3.3V$	-2			mA
	$V_{DDO}^1 =$	$V_{DDO}^{1} = 2.5V$	-1			
	Low-level Output Current	$V_{DDO}^1 = 5V$			4	
I _{OL}		$V_{DDO}^{1} = 3.3V$			2	mA
		$V_{DDO}^{1} = 2.5V$			1	
V _{IH}	High-level Input Voltage		2.0			V
V _{IL}	Low-level Input Voltage				0.8	V
DR	Data Rate		0		10	Mbps
T _A	Ambient Temperature		-40	27	125	°C
Note:						
1. V _{DDO} =	Output-side supply V _{DD} .					

8.4. Thermal Information

	Thermal Metric	CA-IS3541	Unit
	Thermal Wetht	SOIC16-WB(W)	Unit
R	Junction-to-ambient thermal resistance	77.7	°C/W

8.5. Power Rating

Parameters		Test conditions	MIN	TYPE	MAX	Unit
CA-IS354	11					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			65	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			27	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave.			38	mW

8.6. Insulation Specifications

	Parameters	Test Conditions	Value	Unit
CLR	External clearance	Shortest terminal-to-terminal distance through air	W 8	mm
CLN	External clearance	Shortest terminal-to-terminal distance across the package	0	111111
CPG	External creepage	surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	32	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	Per IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
Overvoltage category per IEC 60664-1		Rated mains voltage ≤ 400 V _{RMS}	I-IV	1
		Rated mains voltage ≤ 600 V _{RMS}	1-111	1
DIN V	VDE V 0884-11:2017-01 ¹			1
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	849	V_{PK}
	voltage	AC voltage; time-dependent dielectric breakdown (TDDB) test	600	V _{RMS}
V_{IOWM}	Maximum operating isolation voltage	DC voltage	849	V _{DC}
		V _{TEST} = V _{IOTM} ,	0.13	• 600
	Maximum transient isolation voltage	t=60 s (certified);		
V_{IOTM}		V _{TEST} = 1.2 × V _{IOTM} ,	7070	V_{PK}
		t=1 s (100% product test)	1	
		Test method per IEC 60065, 1.2/50 μs waveform,		
V_{IOSM}	Maximum surge isolation voltage ²	V _{TEST} = 1.6 × V _{IOSM} (production test)	6250	V_{PK}
		Method a, after input/output safety test of the subgroup 2/3,		
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤5	
		$V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10 s$		
		Method a, after environmental test of the subgroup 1,		1
_	A	$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤5	
q_{pd}	Apparent charge ³	$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 s$		pC
		Method b, at routine test (100% production test) and		
		preconditioning (type test)	≤5	
		$V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s;	≥5	
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$		
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft)$, f = 1 MHz	~0.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	
R_{IO}	Isolation resistance ⁴	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>1011	Ω
		V _{IO} = 500 V at T _S = 150°C	>109	
	Pollution degree		2	
UL 157	77			
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification)	5000	V _{RMS}
v 150	waxiiilaiii witiistailailig isolatioii voitage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3000	V RMS

Notes:

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

8.7. Safety-Related Certifications

VDE (pending)	UL	cqc	TUV
Certified according	Certified according to UL	Certified according to GB	Certified according to EN/IEC
to DIN VDE V 0884-	1577 Component	4943.1-2011 and GB 8898-2011	61010-1:2010 (3rd Ed) and EN /IEC 62368-
11:2017-01	Recognition Program		1:2014+A11:2017
Maximum transient isolation voltage: 7070V _{pk} (SOIC16-W)	SOP16-W: 5000 V _{RMS}	SOP16-W: Reinforced insulation, 1000 V _{RMS} maximum working voltage (Altitude ≤ 5000 m)	5000 V _{RMS} (SOP16-W) insulation per EN/IEC 61010-1:2010 (3rd Ed) and EN /IEC 62368- 1:2014+A11:2017, working voltage is up to 1000 V _{RMS} (SOP16-W)
	Certificate number : E511334	Certificate number : SOP16-W: CQC20001251466	CB Certificate number: JPTUV-112091; DE 2-028028 AK Certificate number: AK 50476717 0001; AK 50476719 0001

8.8. Electrical Characteristics

8.8.1. Electrical Characteristics at 5.0V

 V_{DDA} = V_{DDB} = 5 V \pm 10%, T_A = -40 to 125°C

	Parameters	Test conditions	MIN	TYPE	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 9-2	V _{DDO} 1-0.4	4.8		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 9-2		0.2	0.4	V
V _{IT+(IN)}	Rising input switching threshold		1.4	1.7	1.9	V
V _{IT-(IN)}	Falling input switching threshold		1.0	1.3	1.5	V
V _{I(HYS)}	Input Threshold Hysteresis		0.30	0.44	0.50	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; See Figure 9-4	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{DD} = 5 \text{ V}$		2		pF

Notes:

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. The nominal output impedance of each isolator driver is 50 Ω ± 40%.
- 3. Measured from pin to Ground.

8.8.2. Electrical Characteristics at 3.3V

 V_{DDA} = V_{DDB} = 3.3 V \pm 10%, T_A = -40 to 125°C

	Parameters	Test conditions	MIN	TYPE	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 9-2	V _{DDO} 1-0.4	3.1		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 9-2		0.2	0.4	V
V _{IT+(IN)}	Rising input switching threshold		1.4	1.7	1.9	V
V _{IT-(IN)}	Falling input switching threshold		1.0	1.3	1.5	V
V _{I(HYS)}	Input Threshold Hysteresis		0.30	0.44	0.50	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_{I} = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; See Figure 9-4	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz, $V_{DD} = 3.3$ V		2		pF

Notes:

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. The nominal output impedance of each isolator driver is 50 Ω ± 40%.
- 3. Measured from pin to Ground.

8.8.3. Electrical Characteristics at 2.5V

 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	Parameters	Test conditions	MIN	TYPE	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 9-2	V _{DDO} 1-0.4	2.3		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 9-2		0.2	0.4	V
V _{IT+(IN)}	Rising input switching threshold		1.4	1.7	1.9	V
V _{IT-(IN)}	Falling input switching threshold		1.0	1.3	1.5	V
V _{I(HYS)}	Input Threshold Hysteresis		0.30	0.44	0.50	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_I = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; See Figure 9-4	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz, $V_{DD} = 2.5$ V		2		pF
Notes:						

Notes:

1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .

- The nominal output impedance of each isolator driver is 50 Ω ± 40%.
- Measured from pin to Ground. 3.

8.9. Supply Current Characteristics

8.9.1. Supply Current Characteristics at 5.0V

 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

Parameters	Test Conditions	Supply Current	MIN	ТҮР	MAX	Unit	
A-IS3541							
Supply Current – Device	ENA = ENB = 0 V;		I _{DDA}	25	37	56	
shutdown	ENA - ENB - U V,		I _{DDB}	25	37	56	μΑ
	$ENA = ENB = 0 \text{ V; } V_{IN} = V_{DDI}^{1}$		I _{DDA}		1.7	2.9	
Supply Current – Outputs	EIVA - EIVB - U V, VIN - VDDI		I_{DDB}		2.5	3.9	
disabled	ENA = ENB = 0 V; V _{IN} = 0V		I_{DDA}		5.5	7.2	
			I_{DDB}		3.8	5.4	
	ENA = ENB = V _{DDI} ; V _{IN} = V _{DDI}		I_{DDA}		5.6	7.3	
Supply Current DC Signal			I_{DDB}		4.0	5.5	
Supply Current – DC Signal	ENA = ENB = V _{DDI} ; V _{IN} = 0V		I_{DDA}		1.8	3.0	mA
			I_{DDB}		2.7	4.0	
	ENA = ENB = V _{DDI} ; All Channels	1Mbps	I_{DDA}		3.7	6.2	
	Switching with 50% Duty Cycle	(500kHz)	I_{DDB}		3.7	6.2	
Supply Current – AC Signal	Square Wave Clock Input with 5V	10Mbps	I_{DDA}		4.5	7.5	
Amplitude; $C_L = 15 \text{ pF for Each}$ Channel.		(5MHz)	I _{DDB}		6.0	9.9	

8.9.2. Supply Current Characteristics at 3.3V

 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

Parameters	Test Conditions	Supply Current	MIN	ТҮР	MAX	Unit	
CA-IS3541			•	•	•		
Supply Current – Device	ENA = ENB = 0 V;		I _{DDA}	10	15	23	
shutdown	LIVA - LIVB - 0 V,		I _{DDB}	10	15	23	μΑ
	$ENA = ENB = 0 \text{ V; } V_{IN} = V_{DDI}^{1}$		I _{DDA}		1.6	2.6	
Supply Current – Outputs	ENA = ENB = U V; V _{IN} = V _{DDI} ²		I _{DDB}		2.5	3.4	
disabled	ENA = ENB = 0 V; V _{IN} = 0V		I _{DDA}		5.5	6.5	
			I _{DDB}		3.7	4.7	
	ENA = ENB = V _{DDI} ; V _{IN} = V _{DDI}		I _{DDA}		1.7	2.6	
Supply Current – DC Signal			I _{DDB}		2.6	3.5	
Supply Current – DC Signal	ENA = ENB = V _{DDI} ; V _{IN} = 0V		I _{DDA}		5.5	6.5	mA
			I _{DDB}		4.0	4.8	
	ENA=ENB = V _{DDI} ; All Channels	1Mbps	I _{DDA}		3.6	5.6	
Cumply Current AC Signal	Switching with 50% Duty Cycle	(500kHz)	I _{DDB}		3.6	6.3	
Supply Current – AC Signal	Square Wave Clock Input with 3.3V Amplitude; C _L = 15 pF for	10Mbps	I _{DDA}		4.1	6.5	1
	Each Channel.	(5MHz)	I _{DDB}		5.1	7.8	

 V_{DDI} = Input-side supply voltage V_{DD} .

8.9.3. Supply Current Characteristics at 2.5V

 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

Parameters	Test Conditions	Supply Current	MIN	ТҮР	MAX	Unit	
CA-IS3541					-		
Supply Current – Device	ENA = ENB = 0 V;		I _{DDA}	5	7.4	12	μА
shutdown	LINA - LINB - 0 V,	INA - LIND - 0 V,		5	7.4	12	μΑ
	$ENA = ENB = 0 \text{ V; } V_{IN} = V_{DDI}^{1}$		I _{DDA}		1.6	2.9	
Supply Current – Disable	ENA = ENB = U V; V _{IN} = V _{DDI} ¹		I _{DDB}		2.5	3.9	
Supply Current – Disable	ENA = ENB = 0 V; V _{IN} = 0V		I _{DDA}		5.4	7.2	
			I _{DDB}		3.7	5.4	
	ENA = ENB = V _{DDI} ; V _{IN} = V _{DDI}		I _{DDA}		5.5	7.3	
Supply Current – DC Signal			I _{DDB}		3.8	5.5	
Supply culterit – De Signal	ENA = ENB = V _{DDI} ; V _{IN} = 0V		I _{DDA}		1.7	3.0	mA
	LIVA - LIVB - V DDI, V IN - OV		I _{DDB}		2.6	4.0	
	ENA=ENB = V _{DDI} ; All Channels	1Mbps	I _{DDA}		1.5	4.7	
	Switching with 50% Duty Cycle	(500kHz)	I _{DDB}		2.5	5.3	
Supply Current – AC Signal	Square Wave Clock Input with 2.5V Amplitude; CL = 15 pF for	10Mbps	I _{DDA}		1.6	5.4	
	Each Channel. (5MHz)		I _{DDB}		3.8	6.5	
Note: 1. V _{DDI} = Input-side supply \	/ _{DD} .						

8.10. Timing Characteristics

8.10.1. Timing Characteristics at 5.0V

 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	Parameters	Test Conditions	MIN	TYP	MAX	UNIT
DR	Data Rate		0		10	Mbps
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 0.1	5.0	8.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	4.5	ns
t _{sk}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	4.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns
t _{PHZ}	Disable Propagation Delay, High to High Impedance Output			8	13	ns
t _{PLZ}	Disable Propagation Delay, Low to High Impedance Output			8	17	ns
t _{PZH}	Enable Propagation Delay, High Impedance to High Output	See Figure 9-2		15	30	μs
t _{PZL}	Enable Propagation Delay, High Impedance to Low Output			15	30	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 9-3		8	12	μs
t _{SU}	Start-up Time			15	40	μs
Notos		•				•

Note:

^{1.} tsk is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

8.10.2. Timing Characteristics at 3.3V

 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

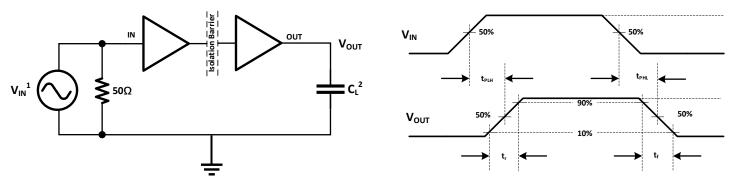
	Parameters	Test Conditions	MIN	TYP	MAX	UNIT
DR	Data Rate		0		10	Mbps
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 9-1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	4.5	ns
t _{sk}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	4.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns
t _{PHZ}	Disable Propagation Delay, High to High Impedance Output			12	19	ns
t _{PLZ}	Disable Propagation Delay, Low to High Impedance Output			14	26	ns
t _{PZH}	Enable Propagation Delay, High Impedance to High Output	See Figure 9-2		8	15	μs
t _{PZL}	Enable Propagation Delay, High Impedance to Low Output			10	20	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 9-3		8	12	μs
t _{SU}	Start-up Time			15	40	μs

Note:

8.10.3. Timing Characteristics at 2.5V

 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

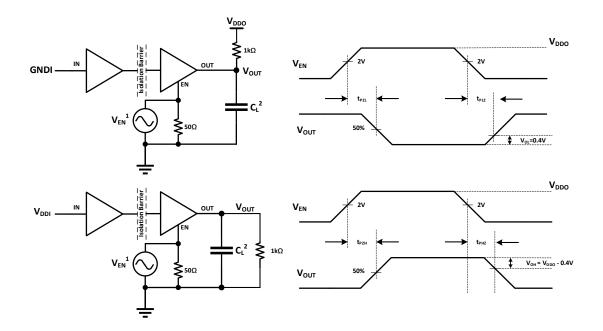
	Parameters	Test Conditions	MIN	TYP	MAX	UNIT
DR	Data Rate		0		10	Mbps
t _{PLH} , t _{PHL}	Propagation Delay Time	San Figure 0.1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 9-1		0.2	5.0	ns
t _{sk}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _r	Output Signal Rise Time	See Figure 9-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 9-1		2.5	4.0	ns
t _{PHZ}	Disable Propagation Delay, High to High Impedance Output			16	26	ns
t _{PLZ}	Disable Propagation Delay, Low to High Impedance Output			16	26	ns
t _{PZH}	Enable Propagation Delay, High Impedance to High Output	See Figure 9-2		10	20	μs
t _{PZL}	Enable Propagation Delay, High Impedance to Low Output			10	20	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 9-3		8	12	μs
t _{SU}	Start-up Time			15	40	μs


Note:

^{1.} tsk is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

^{1.} tsk is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

9. Parameter Measurement Information

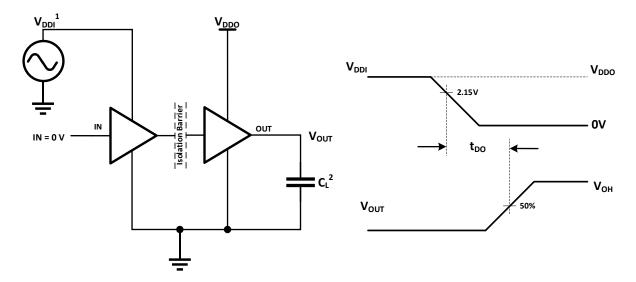


Notes:

1. A square wave generator provide VIN input signal with characteristics: frequency \leq 100kHz, 50% duty cycle, tr \leq 3ns, t_f \leq 3ns, Zout = 50 Ω . At the input, 50 Ω resistor is required to terminate input generator signal. It is not needed in actual application. 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence

the output rising time, it's a key factor in the timing characteristic measurement.

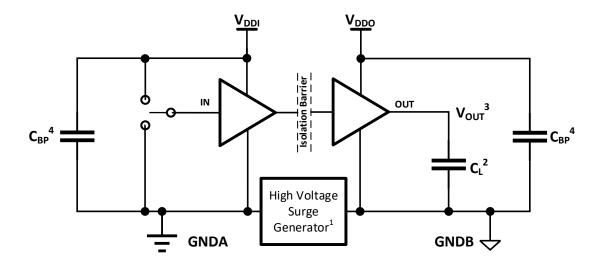
Figure 9-1. Switching Characteristics Test Circuit and Voltage Waveforms



Notes:

- 1. A square wave generator provide V_{IN} input signal with characteristics: frequency \leq 10kHz, 50% duty cycle, $t_r\leq$ 3ns, $t_f\leq$ 3ns, $t_f<$ 3ns, $t_f<$
- 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 9-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



Notes:

- 1. Power Supply Ramp Rate = 10 mV/ns. VDDI should ramp over 2.375V, and less than 5.5V.
- 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 9-3. Default Output Delay Time Test Circuit and Voltage Waveforms

NOTE:

- 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude, rise time <10ns and fall time <10ns, to reach common-mode transient noise with > $150kV/\mu s$ slew rate.
- 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance.
- 3. Pass-fail criteria: the output must remain stable.
- 4. C_{BP} (0.1 ~ 1uF) is bypass capacitance.

Figure 9-4. Common-Mode Transient Immunity Test Circuit

10. Detailed Description

10.1. Overview

The CA-IS3541 is four-channel digital galvanic isolator that incorporates advanced full differential capacitive isolation technology from Chipanalog to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. These devices have an ON-OFF keying (OOK) modulation scheme to transfer digital signals across the SiO₂ based isolation barrier between circuits with different power domains. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal and recovery input signal at output through a buffer stage. With this OOK architecture, the CA-IS3541 family of devices builds a robust data transmission path between different power domains without any special start-up initialization requirements. All of devices in this family come with enable control pins. For the CA-IS3541HWPD/CA-IS3541HWDD, if EN_ pin is low then the corresponding driver output goes to high impedance; For the CA-IS3541HWPA/CA-IS3541HWDA, if EN_ pin is low then put the corresponding side into shutdown mode and place the driver output on corresponding side into high impedance.

10.2. Functional Block Diagram

The conceptual block diagram of a digital capacitive isolator, Figure 10-1, shows a functional block diagram of a typical channel; Figure 10-2 shows the operating waveform of a typical channel. Each channel of the CA-IS3541 is unidirectional, only passes data in one direction, as indicated in the functional diagram. Each device features four unidirectional channels that operate independently with guaranteed data rates from DC up to 10Mbps

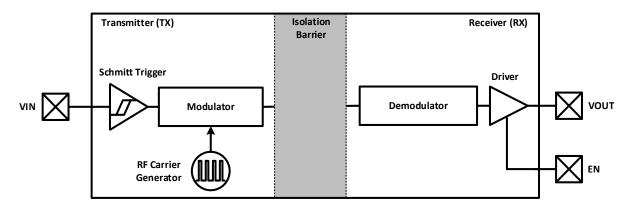


Figure 10-1. Functional Block Diagram of a Single Channel

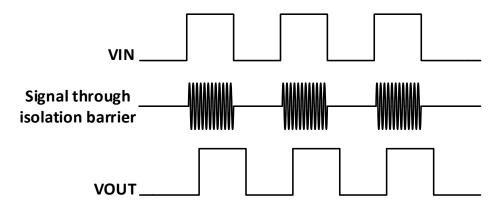


Figure 10-2. Conceptual Operation Waveforms of a Single Channel

10.3. Input and Output Equivalent Circuit

The CA-IS3541 provides different output options. The CA-IS3541HWDD/CA-IS3541HWDA features open-drain output and the CA-IS3541HWPD/CA-IS3541HWPA features push-pull output. See the Ordering Information and Naming Rules for suffixes associated with each option.

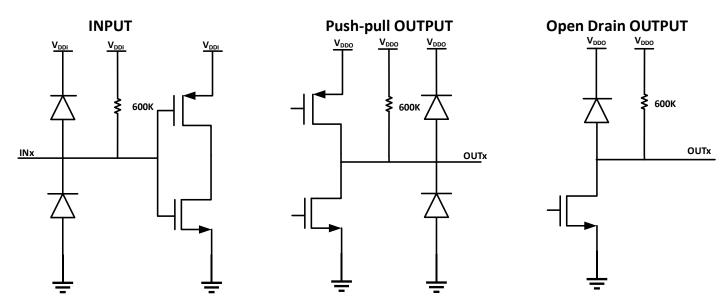


Figure 10-3. Input and output equivalent circuit

10.4. Device Operation Modes

Table 10-1 is the truth table for the CA-IS3541 devices. It shows the different operation modes with enable control input.

Table 10-1. Operation Mode Table

V_{DDI}^1	V_{DDO}^1	INPUT (VIx) ²	ENABLE (EN_) ³	OUTPUT (VOx)	OPERATION
		Н	H or open	Н	Normal operation mode:
		L	H or open	L	Each channel output follows the logic state of its input.
PU	PU	Open	H or open	Default	Default output mode: When input VIx is open, the corresponding channel output goes to its default logic state. Default is <i>High</i> for the CA-IS3541HWPD/CA-IS3541HWDD/CA-IS3541HWDA.
Х	PU	Х	L	Z	High impedance mode: A low level of Enable pin causes the output to be high impedance.
PD	PU	Х	H or open	Default	Default output mode: When VDDI is unpowered, a channel output assumes the logic state based on its default option. Default is <i>High</i> for the CA-IS3541HWPD/CA-IS3541HWDD/CA-IS3541HWDA.
Х	PD	Х	Х	Undetermined	If the output side V _{DDO} is unpowered, a channel output is undetermined. ⁴

Notes:

- V_{DDI} = Input-side V_{DD}; V_{DDO} = Output-side V_{DD}; PU = Powered up (V_{DD} ≥2.375); PD = Powered down (V_{DD} ≤2.24V); X = Irrelevant; H = High level; L = Low level; Z = High Impedance.
- 2. A strongly driven input signal can weakly power the floating V_{DD} through an internal protection diode and cause undetermined output.
- 3. It is recommended to connect the enable inputs to external logic high or low level when the CA-IS3541 operates in noisy environments.
- 4. The outputs are in undetermined state when $V_{DD(UVLO+)} > 2.25V$, $V_{DDO} < 2.375V$.

Table 10-2 lists the operation modes under enable control input. The CA-IS3541 devices come with enable control on both side A and side B for the multi-master driving application, also reduce system power consumption. The driver output on side A (or B) is enabled when ENA (or ENB) is high or floating; and the driver output on side A(or B) is in high-impedance state when ENA (or ENB) is low. See Table 10-2 for more details.

Table 10-2. Enable Control

PART NUMBER	ENA ^{1,2}	ENB ^{1,2}	STATUS
	Н	Х	A-side output VO4 is enabled and follows the logic state of its input.
CA-IS3541HWPD	L	Х	A-side output VO4 is disabled and goes to high impedance state.
CA-IS3541HWDD	Х	Н	B-side outputs VO1, VO2 and VO3 are enabled and each output follows the logic state of its input.
	Х	L	B-side outputs VO1, VO2 and VO3 are disabled and go to high impedance state.
	Н	Х	A-side circuit is enabled and each output on A-side follows the logic state of its input.
	L	Χ	A-side circuit is disabled and is placed into shutdown mode, each output on A-side goes to high
CA-IS3541HWPA			impedance state.
CA-IS3541HWDA	Χ	Η	B-side circuit is enabled and each output on B-side follows the logic state of its input.
	Χ	L	B-side circuit is disabled and is placed into shutdown mode, each output on B-side goes to high
			impedance state.

Notes:

- 1. Enable inputs ENA and ENB can be used to put the respective outputs in high impedance for multi master driving applications, external clock synchronization etc. With internal pull-up resistors, these pins can be connected to logic high or left floating to enable the outputs. If ENA, ENB are unused, it is recommended to connect these pins to a logic level, especially in the noisy environment.
- 2. X = Irrelevant; H = High level; L = Low level.

11. Application and Implementation

11.1. Typical Operation Circuit

Isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, also eliminating ground loops. In many applications, the digital isolators, like CA-IS3541, are replacing optocouplers because they can reduce the power requirements and take up less board space while offering the same isolation capability. Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the CA-IS3541 only requires two external bypass capacitors to operate. To reduce ripple and the chance of introducing data errors, bypass VDDA and VDDB pins with $0.1\mu F$ to $1\mu F$ low-ESR ceramic capacitors to GNDA and GNDB, respectively. Place the bypass capacitors as close to the power supply input pins as possible. Figure 11-1 shows typical operating circuit of the CA-IS3541. The CA-IS3541 does not require special power supply sequencing and the output logic level is set independently on either side by V_{DDA} and V_{DDB} supply voltage.

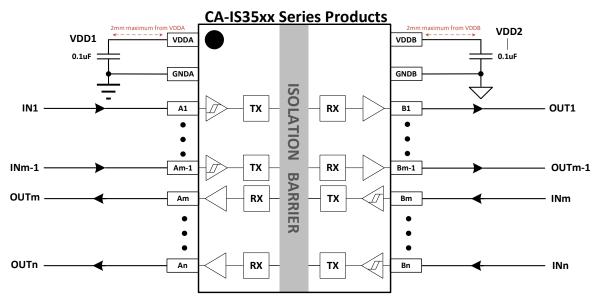


Figure 11-1. Typical Application Circuit of CA-IS3541

When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, MCU or FPGA), and a data converter or communication bus interface, regardless of the interface type or standard. The PCB designer should follow some critical recommendations in order to get the best performance. For high-speed signal circuit boards, we recommend to use the standard FR4 PCB material and a minimum of four layers is required to accomplish a low EMI PCB design. Also, keep the input/output traces as short as possible, avoid using vias to make low-inductance paths for the signals. Keep the area underneath the digital isolator ICs free from ground and signal planes.

11.2. Typical Application in IR46 Smart Meters

According to the dual-chip electricity meter standard promoted by China State Grid, the next-generation dual-chip solution not only meets the requirements of smart grid but also meets the IR46 standard to achieve the independent operation of metering SoC and management MCU. It meets the new requirements of the State Grid meters, also takes into account the development of future (version 2.0) four-meter reading and data acquisition.

A key feature of dual-chip solution is high-speed data-rate. The highest communication baud rate has been increased to 115,200bps from 9,600bps. The traditional optocoupler can not support this requirement, so the high-speed digital isolator is ideal choice in this kind applications. The CA-IS35xx series of low-power, high-speed digital isolators are optimized for the next-generation smart meters, which is designed based on the new standards and requirements. Figure 11-2 shows the application block diagram in IR46 single-phase/three-phase smart meters for the CA-IS35xx family of digital isolators.

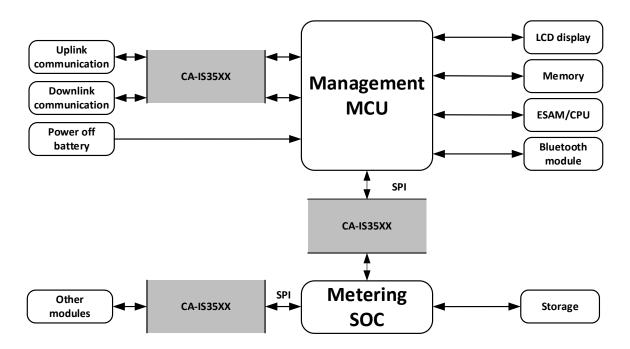
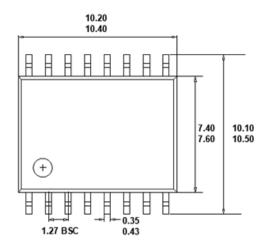
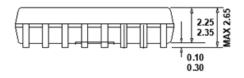
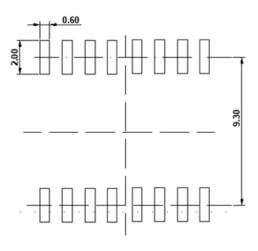
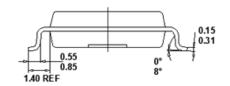



Figure 11-2. CA-IS35xxTypical Application Circuit in IR46 Single-phase/Polyphase Electricity Meters



12. Package Information


16-Pin Wide Body SOIC Package Outline


TOP VIEW

FRONT VIEW

RECOMMMENDED LAND PATTERN

LEFT SIDE VIEW

Note:

1. All dimensions are in millimeters, angles are in degrees.

13. Soldering Temperature (reflow) Profile

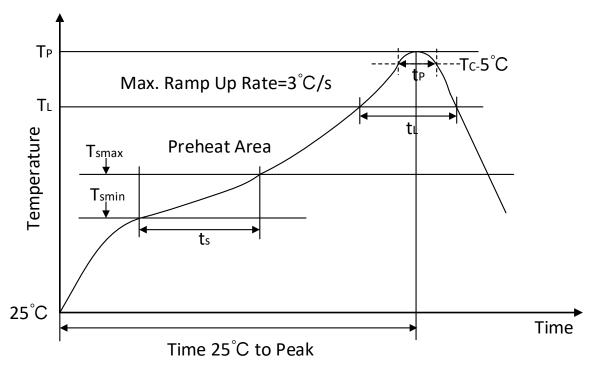
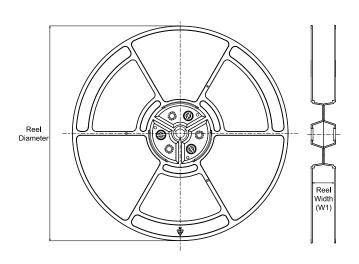
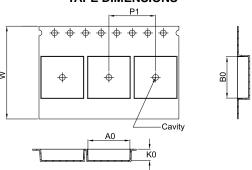


Figure. 13-1 Soldering Temperature (reflow) Profile

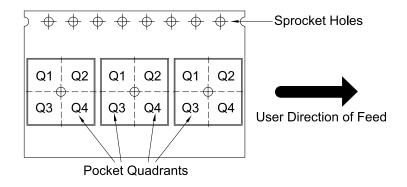

Tab. 13-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 to Peak)	32/second max
Time of Preheat temp(from 150 2 to 200 2	60-120 second
Time to be maintained above 217 2	60-150 second
Peak temperature	260 +5/-0 🛽
Time within 5 ⊡of actual peak temp	30 second
Ramp-down rate	6 ②/second max.
Time from 252 to peak temp	8 minutes max



14. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

	•
Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component
	thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3541HWPD	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3541HWPA	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3541HWDD	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3541HWDA	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

15. Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com