Testhouse

C\&S group GmbH
Schweigerstrasse 13A
D-38302 Wolfenbuettel

Final

Test Report

Device Under Test	
Device Name	CA-IF1042
Manufacturer	Chipanalog
Type	CA-IF1042VS-Q1
Sample marking	1042QS-V1 41930 120 GUE02149E

P22_0116-1_005_IOPT_IF1042VS_report00 Date of Approval: 2022-Mar-10

Customer
Order No. P20_0191
Name Shanghai Chipanalog Microelectronics Co.,LTD

2F, Block C,GaoJing Road,Qingpu District
Shanghai, 201601
P.R. China

Number of Pages

Test Period

Test Method / Test Requirement

Performed Tests and References

Conformance Test Results

1 Homogeneous Network with 16 Nodes / 8 Nodes

Heterogeneous Network with
16 Nodes - Mix of 6 8 Nodes - Mix of 5

2 Test type 1, static test cases

20
from ww06/2022 until ww07/2022

CAN IOPT Test for devices
 - with CAN FD up to $5 \mathrm{Mbit} / \mathrm{s}$ - with low power

1 Interoperability test specification for high-speed CAN transceiver or equivalent devices IOPT.CAN v02d06
2 Static Tests based on:
ISO 16845-2:2018, Road vehicles - Controller area network (CAN) conformance test plan - Part 2: Highspeed medium access unit - Conformance test plan

The Test Results refer to the delivered device.
Pass

Pass

Pass

For detailed information see chapter Test List at the following pages.
This Test Report shall not be reproduced without written approval of the test house, except in full and unchanged.

Approved by Test performed by

[^0]K. Tadajan, Project Engineer

Table of Content

REVISION HISTORY 3
1 DEVICE UNDER TEST (DETAILED) 4
2 SETUP FOR DEVICE UNDER TEST 5
3 TEST EQUIPMENT 6
4 TECHNICAL CORRESPONDENCE 7
5 TEST LIST 8
5.1 Static Conformance Tests (ISO 16845-2:2018) 8
5.2 DYNAMIC TESTS (CAN IOPT v02d06) 14
IOPT 5.4 -Tests in Homogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus for " 5 Mbit/s Devices" 14
IOPT 5.4 -Tests in Homogeneous Network with 8 Nodes - 5 Mbit/s with wake-up via bus 16
IOPT 6.4 -Tests in Heterogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus for " 5 Mbit/s Devices" 17
IOPT 6.4 -Tests in Heterogeneous Network with 8 Nodes - 5 Mbit/s with wake-up via bus 20

Revision History

Old revision	New revision	Amendment Description	Editor
-	00	Final version	KT

1 Device Under Test (detailed)

General	
Date of Sample Arrival	09.02 .2022
Manufacturer	Chipanalog
Sample Marking	$1042 \mathrm{QS}-\mathrm{V} 141930120$ GUE02149E
Test performed with DUT no.	\#01 to \#16 // \#01 to \#08 (homogenous) \#01 to \#04 // \#01 to \#02 (mixed)

Device Specification	CA-IF1042
Name	CA-IF1042VS-Q1
Version	-
Design step	

Documentation	
User manual / datasheet	CA-IF1042_datasheet_version1.01_en_20220301

Device Classification
CAN FD Transceiver
Data rates up to $5 \mathrm{Mbit} / \mathrm{s}$

2 Setup for Device Under Test

Standard CAN HS Transceiver with 8 pins.
Vio connected to Vcc (5V)

Figure 6-1 CA-IF1042x Pin Configuration

3 Test Equipment

The following test equipment and test system have been used.

No.	Component	Manufacturer	Version / Type	Network
1	IOPT.CAN Tester T1	C\&S	v1.1.0.232	mixed
2	IOPT.CAN Tester T2	C\&S	v1.1.0.232	homog
3	UT software version	C\&S	CA-IF1042	

4 Technical Correspondence

Name	Lothar Kukla
Phone	+49533190555400
Fax	+49533190555110
Email	L.Kukla@cs-group.de

5 Test List

5.1 Static Conformance Tests (ISO 16845-2:2018)

Used data sheet:

CA-IF1042_datasheet_version1.01_en_20220301
"The motivation of static test cases is to check the availability and the boundaries in the data sheet of the IUT. For all integrated circuits every related parameter in Table 4 shall be part of the data sheet and fulfil the specified boundaries in terms of physical worst-case condition. Data sheet parameter names may deviate from the names in Table 4, but in this case a cross-reference list (data sheet versus Table 4) shall be provided for this test. Parameter conditions may deviate from the conditions in Table 4, if the data sheet conditions are according to the physical worst-case context in Table 4."

HS-PMA types:

a - without low-power mode and partial network,
b - with low-power mode, normal biasing and without partial network,
c - with low-power mode, automatic biasing and without partial network, n/a
d - with low-power mode, automatic biasing and partial network; n/a

No.	Parameter	$\begin{gathered} \text { Reference } \\ \text { to ISO } \\ \text { 11898- } \\ 2: 2016 \end{gathered}$	Limits			${ }^{d}$ Parameters within the conditions are aligned with Figure 4 p for test.	Conformance test is passed if value		Rating
			Min	Max	Unit		\leq	\geq	
1	General maximum rating $V_{\text {CAN_H }}$ and $V_{\text {Can L }}$	Table 15	-27,0	+40,0	V	-/-	min	Max	Pass 7.1 $V_{\text {BUS }}$
2	Extended maximum rating $\mathrm{V}_{\text {CAN_H }}$ and $V_{\text {CAN_L }}$ (if supported)	Table 15	-58,0	+58,0	V	-/-	min	Max	Pass 7.1 $V_{\text {BUS }}$
3	Maximum rating $\mathrm{V}_{\text {Diff }}$	Table 15	-5,0	+10,0	V	The maximum rating for $\mathrm{V}_{\text {Diff }}$ excludes that all combinations of $\mathrm{V}_{\text {CAN_H }}$ and $V_{\text {CAN_L }}$ are compliant to this standard. $V_{\text {Diff }}=\mathrm{V}_{\text {CAN_H }}-\mathrm{V}_{\text {CAN_L. }}$ This is required regardless whether general or extended maximum rating for $\mathrm{V}_{\text {CAN_H }}$ and $V_{\text {Can_L }}$ is fulfilled	min	Max	Pass 7.1 $\mathrm{V}_{\text {(DIFF) }}$
4	Single ended recessive output voltage on CAN_H ($\mathrm{V}_{\text {CAN_H }}$), bus biasing active	Table 5	+2,0	+3,0	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of $\mathrm{V}_{\text {CAN_H }}$ and $\mathrm{V}_{\text {CAN_L }}$ are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O} \text { (REC) }}$
5	Single ended recessive output voltage on CAN_L ($\mathrm{V}_{\text {CAN L }}$), bus biasing active	Table 5	+2,0	+3,0	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of $\mathrm{V}_{\text {CAN_H }}$ and $\mathrm{V}_{\text {CAN_L }}$ are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O} \text { (REC) }}$
6	Differential recessive output voltage $\left(\mathrm{V}_{\text {Diff }}\right)$, bus biasing active	Table 5	-0,5	+0,05	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of $\mathrm{V}_{\text {CAN_H }}$ and $\mathrm{V}_{\text {CAN_L }}$ are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{OD} \text { (REC) }}$

No.	Parameter	$\begin{aligned} & \text { Reference } \\ & \text { to ISO } \\ & \text { 11898- } \\ & \text { 2:2016 } \end{aligned}$	Limits			${ }^{d}$ Parameters within the conditions are aligned with Figure 4 p for test.	Conformance test is passed if value		Rating
			Min	Max	Unit		\leq	\geq	
7	Single ended recessive output voltage on CAN_H ($\left.\mathrm{V}_{\text {CAN_h }}\right)$, bus biasing inactive	Table 6	-0,1	+0,1	V	See ISO 11898-2:2016, 5.10 to determine when bias shall be inactive. See also ISO 11898-2:2016, Table 6.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O} \text { (STB) }}$
8	Single ended recessive output voltage on CAN_L (VCAN_L), bus biasing inactive	Table 6	-0,1	+0,1	V	See ISO 11898-2:2016, 5.10 and Table 6.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O}(\mathrm{STB})}$
9	Differential recessive output voltage ($\mathrm{V}_{\text {Diff }}$, bus biasing inactive	Table 6	-0,2	+0,2	V	See ISO 11898-2:2016, 5.10 and Table 6.	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O} \text { (STB) }}$
10	Single ended voltage on CAN_H, dominant output (VCAN_H)	Table 2	+2,75	+4,50	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega \ldots 65 \Omega$	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O}(\mathrm{DOM})}$
11	Single ended voltage on CAN_L, dominant output (VCANL)	Table 2	+0,5	+2,25	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega \ldots 65 \Omega$	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{O} \text { (DOM) }}$
12	Differential voltage on normal bus load, dominant output ($\mathrm{V}_{\text {Difit }}$)	Table 2	+1,5	+3,0	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega \ldots 65 \Omega$	max	min	Pass 7.5 $\mathrm{V}_{\mathrm{OD}(\mathrm{DOM})}$
13	Differential voltage on effective resistance during arbitration, dominant output ($\left.\mathrm{V}_{\text {Difit }}\right)$	Table 2	+1,5	+5,0	V	$\mathrm{R}_{\mathrm{L}}=2240 \Omega$	max	min	Pass 7.5 $\mathrm{V}_{\text {OD(DOM) }}$
14	Differential voltage on extended bus load, dominant output ($\mathrm{V}_{\text {Diff }}$) (if supported)	Table 2	+1,4	+3,3	V	$\mathrm{R}_{\mathrm{L}}=45 \Omega \ldots 70 \Omega$	max	min	Not supported
15	Driver symmetry ($\mathrm{V}_{\mathrm{SYM}}$), with a frequency that corresponds to the highest bit rate for which the HS-PMA implementation is intended, however, at most 1 MHz (2 MBit/s)	Table 3	+0,9	+1,1	-/-	$\mathrm{R}_{\mathrm{L}}=60 \Omega ; \mathrm{C}_{1}=4,7 \mathrm{nF}$	max	min	$\begin{aligned} & \text { Pass } \\ & 7.5 \\ & \mathrm{~V}_{\mathrm{SYM}} \end{aligned}$
16	Absolute current on CAN_H (ICAN_H), Maximum driver output current	Table 4	-/-	+115	mA	$\begin{aligned} & -3,0 \mathrm{~V} \leq \mathrm{V}_{\text {CAN_H }} \leq+18,0 \mathrm{~V} \\ & \text { See also } \\ & \text { ISO 11898-2:2016, Table } 4 . \end{aligned}$	max	---	Pass 7.5 los(ss_Dом)

No.	Parameter	$\begin{gathered} \text { Reference } \\ \text { to ISO } \\ \text { 11898- } \\ \text { 2:2016 } \end{gathered}$	Limits			${ }^{\text {a }}$ Parameters within the conditions are aligned with Figure 4 p for test.	Conformance test is passed if value		Rating
			Min	Max	Unit		\leq	\geq	
17	Absolute current on CAN_L (ICAN_L), Maximum driver output current	Table 4	---	+115	mA	$\begin{aligned} & -3,0 \mathrm{~V} \leq \mathrm{V}_{\text {CAN } _L} \leq+18,0 \mathrm{~V} \\ & \text { See also } \\ & \text { ISO 11898-2:2016, Table } 4 . \end{aligned}$	max	---	Pass 7.5 los(Ss_DOM)
18	Transmit dominant time out ($\mathrm{t}_{\text {dom }}$), (if supported) b) The minimum value of $0,3 \mathrm{~ms}$ is accepted for legacy implementations.	Table 7	$+0,8^{\text {b }}$	+10,0	ms	-/-	max	min	Pass 7.6 $\mathrm{t}_{\mathrm{DOM}}$
19	Receiver recessive state differential input voltage range, bus biasing active ($\mathrm{V}_{\text {Diff }}$)	Table 8	-3,0	+0,5	V	$\begin{aligned} & -12,0 \vee \leq V_{\text {CAN } L} \leq+12,0 \mathrm{~V} \\ & -12,0 \vee \leq \mathrm{V}_{\text {CAN_H }} \leq+12,0 \mathrm{~V} \end{aligned}$	min	max	$\begin{aligned} & \text { Pass } \\ & 7.5 \\ & \text { V }_{\text {DIFF_R }} \end{aligned}$
20	Receiver dominant state differential input voltage range, bus biasing active ($\mathrm{V}_{\text {Diff }}$)	Table 8	+0,9	+8,0	V	$\begin{aligned} & -12,0 \vee \leq V_{\text {CAN } L} \leq+12,0 \mathrm{~V} \\ & -12,0 \mathrm{~V} \leq \mathrm{V}_{\text {CAN_H }} \leq+12,0 \mathrm{~V} \end{aligned}$	min	max	Pass 7.5 VDTFF_D
21	Receiver recessive state differential input voltage range, bus biasing inactive ($\mathrm{V}_{\text {Diff }}$), (if supported)	Table 9	-3,0	+0,4	V	$\begin{aligned} & -12,0 \vee \leq V_{\text {CAN } L} \leq+12,0 \mathrm{~V} \\ & -12,0 \mathrm{~V} \leq \mathrm{V}_{\text {CAN }-\mathrm{H}} \leq+12,0 \mathrm{~V} \end{aligned}$	min	max	$\begin{aligned} & \text { Pass } \\ & 7.5 \\ & \text { V }_{\text {DIFF_R(STB) }} \end{aligned}$
22	Receiver dominant state differential input voltage range, bus biasing inactive $\left(V_{\text {Diff }}\right)$, (if supported)	Table 9	+1,15	+8,0	V	$\begin{aligned} & -12,0 \vee \leq V_{\text {CAN } L} \leq+12,0 \mathrm{~V} \\ & -12,0 \vee \leq \mathrm{V}_{\text {CAN_H }} \leq+12,0 \mathrm{~V} \end{aligned}$	min	max	Pass 7.5 $V_{\text {DTFF_D(STB) }}$
23	Differential internal resistance, receiver input resistance ($\mathrm{R}_{\text {Diff }}$)	Table 10	12	100	$k \Omega$	$\begin{aligned} & -2,0 \vee \leq \mathrm{V}_{\mathrm{CAN} _\mathrm{H}} \leq+7,0 \mathrm{~V} \\ & -2,0 \leq \leq \mathrm{V}_{\text {CAN } L} \leq+7,0 \mathrm{~V} \end{aligned}$	max	min	Pass 7.5 $\mathrm{R}_{\text {DIFF }}$
24	Single ended internal resistance, receiver input resistance ($\mathrm{R}_{\text {CAN_H }}, \mathrm{R}_{\text {CAN_L }}$)	Table 10	6	50	$k \Omega$	$\begin{aligned} & -2,0 \vee \leq \mathrm{V}_{\text {CAN } H} \leq+7,0 \mathrm{~V} \\ & -2,0 \mathrm{~V} \leq \mathrm{V}_{\text {CANL }} \leq+7,0 \mathrm{~V} \end{aligned}$	max	min	$\begin{aligned} & \text { Pass } \\ & 7.5 \\ & \mathrm{R}_{\mathrm{IN}} \end{aligned}$
25	Matching of receiver internal resistance (m_{R})	Table 11	-0,03	+0,03	-/-	$\begin{aligned} & V_{\text {CAN } H}=+5,0 \mathrm{~V} \\ & \mathrm{~V}_{\text {CAN L }}=+5,0 \mathrm{~V} \end{aligned}$	max	min	Pass 7.5 $\mathrm{R}_{\text {DIFF(M) }}$
26	Loop delay (t Loop $^{\text {) }}$	Table 12	-/-	255	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RXD}}=15 \mathrm{pF}$	max	-/-	Pass 7.6 $t_{\text {loop }}, t_{\text {loop2 }}$

No.	Parameter	$\begin{aligned} & \text { Reference } \\ & \text { to ISO } \\ & \text { 11898- } \\ & 2: 2016 \end{aligned}$	Limits			${ }^{d}$ Parameters within the conditions are aligned with Figure 4 p for test.	Conformance test is passed if value		Rating
			Min	Max	Unit		\leq	\geq	
27	Transmitted recessive bit width @ $2 \mathrm{Mbit} / \mathrm{s}$ (t.tit(Bus)), (if supported)	Table 13	435	530	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RXD}}=15 \mathrm{pF}$	max	min	Pass 7.6 tbit(bus)
28	Received recessive bit width @ 2 Mbit/s ($\mathrm{t}_{\text {Bit (RXD) }}$), (if supported)	Table 13	400	550	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RXD}}=15 \mathrm{pF}$	max	min	Pass 7.6 $t_{\text {bit }}$ (rxd)
29	Receiver timing symmetry @ 2 Mbit/s ($\Delta \mathrm{t}_{\text {Rec }}$), (if supported)	Table 13	-65	+40	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RXD}}=15 \mathrm{pF}$	max	min	Pass 7.6 trec
30	Transmitted recessive bit width @ $5 \mathrm{Mbit} / \mathrm{s}$ (t.tit(Bus) $)$, (if supported)	Table 14	155	210	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\text {RXD }}=15 \mathrm{pF}$	max	min	Pass 7.6 $t_{\text {bit(bus) }}$
31	Received recessive bit width @ 5 Mbit/s (tiit(RXD)), (if supported)	Table 14	120	220	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RXD}}=15 \mathrm{pF}$	max	min	Pass 7.6 $t_{\text {bit(rxd) }}$
32	Receiver timing symmetry @ 5 Mbit/s ($\Delta \mathrm{t}_{\text {Rec }}$), (if supported)	Table 14	-45	+15	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{2}=100 \mathrm{pF}, \mathrm{C}_{\text {RXD }}=15 \mathrm{pF}$	max	min	Pass 7.6 $\mathrm{t}_{\text {rec }}$
33	Leakage current on CAN_H, CAN_L (ICAN_H, $I_{\text {CAN_L }}$), maximum leakage currents, unpowered	Table 16	-10	+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CAN_H }}=5 \mathrm{~V}, \mathrm{~V}_{\text {CAN } L}=5 \mathrm{~V},$ All supply inputs connected to GND.	max	min	$\begin{aligned} & \text { Pass } \\ & 7.5 \\ & \text { LLKG }^{2} \end{aligned}$
34	CAN activity filter time, long ($\mathrm{t}_{\text {Filter }}$), (if supported)	Table 20	0,5	5,0	$\mu \mathrm{s}$	-/-	max	min	$\begin{aligned} & \text { Pass } \\ & 7.6 \\ & T_{\text {wk_FILTER }} \end{aligned}$
35	CAN activity filter time, short ($\mathrm{t}_{\text {Filter }}$), (if supported)	Table 20	0,15	1,8	$\mu \mathrm{s}$	-/-	max	min	$\begin{aligned} & \text { Pass } \\ & 7.6 \\ & T_{\text {wk_FILTER }} \end{aligned}$
36	Wake-up timeout ($\mathrm{t}_{\text {Wake }}$), (if supported) c) For legacy implementations a minimum value of 350μ s is acceptable.	Table 20	800, $0^{\text {c }}$	10000,0	$\mu \mathrm{s}$	-/-	max	min	$\begin{aligned} & \hline \text { Pass } \\ & 7.6 \\ & \text { TwK_FILTEROUT } \end{aligned}$
37	Timeout for bus inactivity ($\mathrm{t}_{\text {silece }}$)	Table 20	$0,6 * 10^{6}$	$1,2^{*} 10^{6}$	$\mu \mathrm{s}$	-/-	max	min	n/a

No.	Parameter	$\begin{gathered} \text { Reference } \\ \text { to ISO } \\ \text { 11898- } \\ 2: 2016 \end{gathered}$	Limits			Conditions ${ }^{\text {d }}$ ${ }^{\text {d }}$ Parameters within the conditions are aligned with Figure 4 p for test.	Conformance test is passed if value		Rating
			Min	Max	Unit		\leq	\geq	
38	Bus Bias reaction time (tbais)	Table 20	-/-	250,0	$\mu \mathrm{s}$	-/-	max	-/-	n/a
39	Number of recessive bits before a new SOF shall be accepted ($n_{\text {Bits }}$ dide $)$ (if supported)	Table 18	6	10	--	--	max	min	n/a
40	CAN FD data phase glitch filter (slow) (pGlitch ${ }_{\text {sow }}$) (if supported)	Table 19	5,00	17,50	\% of arbitration bit time	---	min	max	n/a
41	CAN FD data phase glitch filter (fast) ($\mathrm{pGlitch}_{\text {Fast }}$) (if supported)	Table 19	2,50	8,75	\% of arbitration bit time	---	min	max	n/a

5.2 Dynamic Tests (CAN IOPT v02d06)

Following test case numeration relates on the corresponding test specification.
IOPT 5.4 -Tests in Homogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus for " $5 \mathrm{Mbit} / \mathrm{s}$ Devices"

No.	Tests in Homogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus	Result	Comment
5.4.1	Test Flow 1 Op. mode variation after recovery at normal mode, failure application on startup		Performed in 8-node-network with 5 Mbit/s
5.4.1.1.x	GND Shift = 0V	n/a	
5.4.1.2.x	GND Shift $=+1 \mathrm{~V}$	n/a	
5.4.1.3.x	GND Shift $=-1 \mathrm{~V}$	n/a	
5.4.2	Test Flow 2 Op. mode variation after recovery at normal mode, failure application in normal mode		4224 Test cases
5.4.2.1.x	GND Shift = 0V	E/Pass	
5.4.2.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
5.4.2.3.x	GND Shift = -1V	E/Pass	
5.4.3	Test Flow 3 Op. mode variation before recovery at normal Mode, failure application in normal mode		4224 test cases
5.4.3.1.x	GND Shift = 0V	E/Pass	
5.4.3.2.x	GND Shift = +1V	E/Pass	
5.4.3.3.x	GND Shift = -1V	E/Pass	
5.4.4	Test Flow 4 Op. mode variation with failure before recovery at normal mode, failure application on startup		264 Test cases
5.4.4.1.x	GND Shift = 0V	E/Pass	
5.4.4.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
5.4.4.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	

No.	Tests in Homogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus	Result	Comment
5.4.5	Test Flow 5 Op. mode variation with failure before recovery at low-power mode, failure application in normal mode		4224 Test cases
5.4.5.1.x	GND Shift = 0V	E/Pass	
5.4.5.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
5.4.5.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	
5.4.6	Test Flow 6 Op. mode variation with failure before recovery at low-power mode, failure application in lowpower mode		4224 Test cases
5.4.6.1.x	GND Shift = 0V	E/Pass	
5.4.6.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
5.4.6.3.x	GND Shift = -1V	E/Pass	
5.4.7	Test Flow 7 Op. mode variation with failure before recovery at normal mode, failure application in lowpower mode		264 Test cases
5.4.7.1.x	GND Shift = 0V	E/Pass	
5.4.7.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
5.4.7.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	

Signs and symbols

E executed

IOPT 5.4 -Tests in Homogeneous Network with 8 Nodes - 5 Mbit/s with wake-up via bus

No.	Tests in Homogeneous Network with 8 Nodes -5 Mbit/s with wake-up via bus	Result	Comment
5.4 .1	Test Flow 1 Op. mode variation after recovery at normal mode, failure application on startup	1088 Test cases	
5.4.1.1.x	GND Shift $=0 \mathrm{~V}$	E/Pass	
$5.4 .1 .2 . \mathrm{x}$	GND Shift $=+1 \mathrm{~V}$	E/Pass	
$5.4 .1 .3 . \mathrm{x}$	GND Shift $=-1 \mathrm{~V}$	E/Pass	

Signs and symbols
E executed

IOPT 6.4-Tests in Heterogeneous Network with 16 Nodes - 2 Mbit/s with wake-up via bus for " 5 Mbit/s Devices"

No.	Tests in Heterogeneous Network with 16 Nodes $\mathbf{- 2}$ Mbit/s with wake-up via bus - Mix of 6*: 2xA / 3xB / 2xC / 2xD / 3xE / 4xIUT	Result	Comment
6.4.1	Test Flow 1 Op. mode variation after recovery at normal mode, failure application on startup		Performed in 8-node-network with 5 Mbit/s
6.4.1.1.x	GND Shift = 0V	n/a	
6.4.1.2.x	GND Shift $=+1 \mathrm{~V}$	n/a	
6.4.1.3.x	GND Shift $=-1 \mathrm{~V}$	n/a	
6.4.2	Test Flow 2 Op. mode variation after recovery at normal mode, failure application in normal mode		4224 Test cases
6.4.2.1.x	GND Shift = 0V	E/Pass	
6.4.2.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.2.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	
6.4.3	Test Flow 3 Op. mode variation before recovery at normal Mode, failure application in normal mode		4224 Test cases
6.4.3.1.x	GND Shift = 0V	E/Pass	
6.4.3.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.3.3.x	GND Shift = -1V	E/Pass	
6.4.4	Test Flow 4 Op. mode variation with failure before recovery at normal mode, failure application on startup		264 Test cases
6.4.4.1.x	GND Shift = 0V	E/Pass	
6.4.4.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.4.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	

No.	Tests in Heterogeneous Network with 16 Nodes $\mathbf{- 2}$ Mbit/s with wake-up via bus - Mix of 6*: 2xA / 3xB / 2xC / 2xD / 3xE / 4xIUT	Result	Comment
6.4.5	Test Flow 5 Op. mode variation with failure before recovery at low-power mode, failure application in normal mode		4224 Test cases
6.4.5.1.x	GND Shift = 0V	E/Pass	
6.4.5.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.5.3.x	GND Shift = -1V	E/Pass	
6.4.6	Test Flow 6 Op. mode variation with failure before recovery at low-power mode, failure application in lowpower mode		4224 Test cases
6.4.6.1.x	GND Shift = 0V	E/Pass	
6.4.6.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.6.3.x	GND Shift = -1V	E/Pass	
6.4 .7	Test Flow 7 Op. mode variation with failure before recovery at normal mode, failure application in low-power mode		264 Test cases
6.4.7.1.x	GND Shift = 0V	E/Pass	
6.4.7.2.x	GND Shift $=+1 \mathrm{~V}$	E/Pass	
6.4.7.3.x	GND Shift $=-1 \mathrm{~V}$	E/Pass	

Signs and symbols
E executed

Abbreviations to identify components:

- $2 \times \mathrm{A}$ TJA1044GT
- $3 \times B$ TJA1043T
- $2 \times \mathrm{C}$ TLE9252
- $2 \times \mathrm{D}$ TLE9255WSK
- $3 \times \mathrm{E}$ TLE9251
- 4 x IUT Implementation Under Test

Positions of the reference devices in $500 \mathrm{kbit} / \mathrm{s}$ and $2 \mathrm{Mbit} / \mathrm{s}$ reference environments:

Node:	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$	$\# 8$	$\# 9$	$\# 10$	$\# 11$	$\# 12$	$\# 13$	$\# 14$	$\# 15$	$\# 16$
TRX:	B	A	IUT	C	E	D	IUT	B	E	A	IUT	B	C	D	IUT	E

IOPT 6.4 -Tests in Heterogeneous Network with 8 Nodes - 5 Mbit/s with wake-up via bus

No.	Tests in Heterogeneous Network with 8 Nodes -5 Mbit/s with wake-up via bus - Mix of $5^{\star}: 1 \times \mathrm{xA} / 2 \mathrm{xB} / 1 \mathrm{xC} / 2 \mathrm{xD} / 2 \mathrm{xIUT}$	Result	Comment
6.4 .1	Test Flow 1 Op. mode variation after recovery at normal mode, failure application on startup	1088 Test cases	
$6.4 .1 .1 . \mathrm{x}$	GND Shift $=0 \mathrm{~V}$	E/Pass	
$6.4 .1 .2 . \mathrm{x}$	GND Shift $=+1 \mathrm{~V}$	E/Pass	
$6.4 .1 .3 . \mathrm{x}$	GND Shift $=-1 \mathrm{~V}$	E/Pass	

Signs and symbols
E executed

Abbreviations to identify components:

- $1 \times \mathrm{A}$ TJA1044GT
- $2 \times B$ TJA1043T
- $1 \times C$ TLE9252
- $2 \times \mathrm{D}$ TLE9251
- 2 x IUT Implementation Under Test

Positions of the reference devices in $5 \mathrm{Mbit} / \mathrm{s}$ reference environments:

Node:	\#1	\#2	\#3	\#4	\#5	\#6	\#7	\#8
TRX:	A	B	IUT	C	B	D	IUT	D

[^0]: L. Kukla, Project Manager

