Testhouse

C&S group GmbH Schweigerstrasse 13A D-38302 Wolfenbuettel

Phone: +49 5331/90 555 - 0 Fax: +49 5331/ 90 555 - 110

Final

P22 0246 IOPT CA-IF1051VS report00 Date of Approval: 2022-Sept-26

Test Report

Device Under Test

Object Family CA-IF1051S -Q1 Order No. P22 0246

> CA-IF1051VS -Q1 CA-IF1051D -Q1 CA-IF1051VD -Q1

Manufacturer Chipanalog Name Shanghai Chipanalog

Microelectronics Co.,LTD

CA-IF1051S -Q1 Address 2F, Block C, Gao Jing Road, Qingpu Type

Customer

District

Sample marking 1051S-Q1 34690 2901 Shanghai 201601 DUC12219M P.R. China

19 **Number of Pages**

from ww34/2022 until ww34/2022 **Test Period**

Test Method / Test Requirement CAN IOPT Test for devices

- with CAN FD up to 5 Mbit/s

- without Low Power Mode

Interoperability test specification for high-speed CAN **Performed Tests and References**

transceiver or equivalent devices

IOPT.CAN v02d09

2 Static Tests based on:

> ISO 16845-2:2018, Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access

unit - Conformance test plan

Conformance Test Results The Test Results refer to the delivered device.

1 Homogeneous Network with 16 Nodes / 8 Nodes

Heterogeneous Network with 16 Nodes - Mix of 6

8 Nodes - Mix of 5

Test type 1, static test cases

Pass

Pass

Pass

For detailed information see chapter Test List at the following pages.

This Test Report shall not be reproduced without written approval of the test house, except in full and unchanged.

Approved by Test performed by

L. Kukla, Project Manager K. Tadajan, Project Engineer

Table of Content

R	REVISION HISTORY	3
1	DEVICE UNDER TEST (DETAILED)	4
2	SETUP FOR DEVICE UNDER TEST	5
3	TEST EQUIPMENT	6
4	TECHNICAL CORRESPONDENCE	7
5	TEST LIST	8
	5.1 STATIC CONFORMANCE TESTS (ISO 16845-2:2018)	8
	5.2 DYNAMIC TESTS (CAN IOPT v02D09)	14
	IOPT 5.4 – Tests in Homogeneous Network with 16 Nodes – 2 Mbit/s w/o Low Power for "5 Mbit Devices"	
	IOPT 5.4 – Tests in Homogeneous Network with 8 Nodes – 5 Mbit/s w/o Low Power	16
	IOPT 6.4 – Tests in Heterogeneous Network with 16 Nodes – 2 Mbit/s w/o Low Power for "5 Mb Devices"	
	IOPT 6.4 – Tests in Heterogeneous Network with 8 Nodes – 5 Mbit/s with out Low Power	19

Revision History

Old revision	New revision	Amendment Description	Editor
_	00	Final version	KT

1 Device Under Test (detailed)

General				
Date of Sample Arrival	23.08.2022			
Manufacturer	Chipanalog			
Sample Marking	1051S-Q1 34690 2901 DUC12219M			
Test performed with DUT no.	#01 to #16 // #01 to #08 (homogenous) #01 to #04 // #01 to #02 (mixed)			

Device Specification	
Family Names	CA-IF1051S -Q1 / CA-IF1051VS -Q1 CA-IF1051D -Q1 / CA-IF1051VD -Q1
DUT Version	CA-IF1051S -Q1
Design step	-

Documentation	
User manual / datasheet	CA-IF1051S_VS-Q1_datasheet_version1.01_en_20220923

Device Classification	
CAN FD Transceiver	Data rates up to 5 Mbit/s

2 Setup for Device Under Test

Standard CAN HS Transceiver with 8 pins.

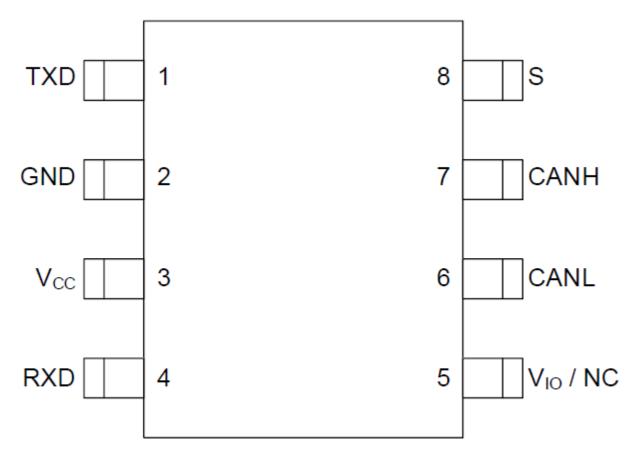


Figure 6-1 CA-IF1051S/VS Pin Configuration

3 Test Equipment

The following test equipment and test system have been used.

No.	Component	Manufacturer	Version / Type	Network
1	IOPT.CAN Tester T2	C&S	V1.1.0.232	Homogeneous Heterogeneous
2	UT software version	C&S	CA-IF1051	

4 Technical Correspondence

Name	Lothar Kukla
Phone	+49 5331 90555 400
Fax	+49 5331 90555 110
Email	L.Kukla@cs-group.de

5 Test List

5.1 Static Conformance Tests (ISO 16845-2:2018)

Used data sheet:

CA-IF1051S_VS-Q1_datasheet_version1.01_en_20220923

"The motivation of static test cases is to check the availability and the boundaries in the data sheet of the IUT. For all integrated circuits every related parameter in Table 4 shall be part of the data sheet and fulfil the specified boundaries in terms of physical worst-case condition. Data sheet parameter names may deviate from the names in Table 4, but in this case a cross-reference list (data sheet versus Table 4) shall be provided for this test. Parameter conditions may deviate from the conditions in Table 4, if the data sheet conditions are according to the physical worst-case context in Table 4."

HS-PMA types:

- a without low-power mode and partial network,
- b with low-power mode, normal biasing and without partial network, n/a
- c with low-power mode, automatic biasing and without partial network, n/a
- d with low-power mode, automatic biasing and partial network; n/a

No.	to IS6 11898	Reference to ISO				Conditions ^d	Conformance test is passed if value		
		11898- 2:2016	Min	Max	Unit	^d Parameters within the conditions are aligned with Figure 4 p for test.	≤	2	Rating
1	General maximum rating $V_{\text{CAN_H}}$ and $V_{\text{CAN_L}}$	Table 15	-27,0	+40,0	V	-/-	min	max	Pass 7.1 VBUS
2	Extended maximum rating $V_{\text{CAN_H}}$ and $V_{\text{CAN_L}}$ (if supported)	Table 15	-58,0	+58,0	V	-/-	min	max	Pass 7.1 VBUS
3	Maximum rating V _{Diff}	Table 15	-5,0	+10,0	V	The maximum rating for V_{Diff} excludes that all combinations of $V_{\text{CAN_H}}$ and $V_{\text{CAN_L}}$ are compliant to this standard. $V_{\text{Diff}} = V_{\text{CAN_H}} - V_{\text{CAN_L}}.$ This is required regardless whether general or extended maximum rating for $V_{\text{CAN_H}}$ and $V_{\text{CAN_L}}$ is fulfilled	min	max	Pass 7.1 V(DIFF)
4	Single ended recessive output voltage on CAN_H (V_{CAN_H}), bus biasing active	Table 5	+2,0	+3,0	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of V _{CAN_H} and V _{CAN_L} are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 VO(REC)
5	Single ended recessive output voltage on CAN_L (V _{CAN_L}), bus biasing active	Table 5	+2,0	+3,0	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of V _{CAN_H} and V _{CAN_L} are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 VO(REC)
6	Differential recessive output voltage (V _{Diff}), bus biasing active	Table 5	-0,5	+0,05	V	All requirements in Table 5 apply concurrently. Therefore, not all combinations of V _{CAN_H} and V _{CAN_L} are compliant with the defined differential output voltage. See also ISO 11898-2:2016, Table 5.	max	min	Pass 7.5 VOD(REC)
7	Single ended recessive output voltage on CAN_H (V _{CAN_H}), bus biasing inactive	Table 6	-0,1	+0,1	V	See ISO 11898-2:2016, 5.10 to determine when bias shall be inactive. See also ISO 11898-2:2016, Table 6.	max	min	n/a
8	Single ended recessive output voltage on CAN_L (V _{CAN_L}), bus biasing inactive	Table 6	-0,1	+0,1	V	See ISO 11898-2:2016, 5.10 and Table 6.	max	min	n/a

No.	Parameter	Reference to ISO		Limits		Conditions ^d	Conditions ^d Conformance test is passed if value			
		11898- 2:2016	Min	Max	Unit	^d Parameters within the conditions are aligned with Figure 4 p for test.	≤	2	Rating	
9	Differential recessive output voltage (V _{Diff}), bus biasing inactive	Table 6	-0,2	+0,2	V	See ISO 11898-2:2016, 5.10 and Table 6.	max	min	n/a	
10	Single ended voltage on CAN_H, dominant output (V _{CAN_H})	Table 2	+2,75	+4,50	V	$R_L = 50 \Omega \dots 65 \Omega$	max	min	Pass 7.5 VO(DOM)	
11	Single ended voltage on CAN_L, dominant output (V _{CAN_L})	Table 2	+0,5	+2,25	V	$R_L = 50 \ \Omega \dots 65 \ \Omega$	max	min	Pass 7.5 VO(DOM)	
12	Differential voltage on normal bus load, dominant output (V _{Dfiff})	Table 2	+1,5	+3,0	V	$R_L = 50 \Omega \dots 65 \Omega$	max	min	Pass 7.5 VOD(DOM)	
13	Differential voltage on effective resistance during arbitration, dominant output (V _{Diff})	Table 2	+1,5	+5,0	V	R _L = 2240 Ω	max	min	Pass 7.5 VOD(DOM)	
14	Differential voltage on extended bus load, dominant output (V _{Diff}) (if supported)	Table 2	+1,4	+3,3	V	$R_L = 45~\Omega~~70~\Omega$	max	min	Not supported	
15	Driver symmetry (V _{SYM}), with a frequency that corresponds to the highest bit rate for which the HS-PMA implementation is intended, however, at most 1 MHz (2 MBit/s)	Table 3	+0,9	+1,1	-/-	$R_L = 60 \ \Omega; \ C_1 = 4,7 \ nF$	max	min	Pass 7.5 VSYM	
16	Absolute current on CAN_H (I _{CAN_H}), Maximum driver output current	Table 4	-/-	+115	mA	-3,0 V ≤ V _{CAN_H} ≤ +18,0 V See also ISO 11898-2:2016, Table 4.	max	-/-	Pass 7.5 IOS(SS_DOM)	
17	Absolute current on CAN_L (I _{CAN_L}), Maximum driver output current	Table 4	-/-	+115	mA	-3,0 V ≤ V _{CAN_L} ≤ +18,0 V See also ISO 11898-2:2016, Table 4.	max	-/-	Pass 7.5 IOS(SS_DOM)	
18	Transmit dominant time out (t _{dom}), (if supported) b) The minimum value of 0,3 ms is accepted for legacy implementations.	Table 7	+0,8 ^b	+10,0	ms	-/-	max	min	Pass 7.6 tbom	

No.	Parameter Referer to ISC)			Conditions ^d Conformance test is passed if value			
		11898- 2:2016	Min	Мах	Unit	d Parameters within the conditions are aligned with Figure 4 p for test.	≤	2	Rating
19	Receiver recessive state differential input voltage range, bus biasing active (V _{Diff})	Table 8	-3,0	+0,5	V	-12,0 V ≤ V _{CAN_L} ≤ +12,0 V -12,0 V ≤ V _{CAN_H} ≤ +12,0 V	min	max	Pass 7.5 V _{DIFF_R}
20	Receiver dominant state differential input voltage range, bus biasing active (V _{Diff})	Table 8	+0,9	+8,0	V	-12,0 V ≤ V _{CAN_L} ≤ +12,0 V -12,0 V ≤ V _{CAN_H} ≤ +12,0 V	min	max	Pass 7.5 V _{DTFF_D}
21	Receiver recessive state differential input voltage range, bus biasing inactive (V _{Diff}), (if supported)	Table 9	-3,0	+0,4	V	-12,0 V ≤ V _{CAN_L} ≤ +12,0 V -12,0 V ≤ V _{CAN_H} ≤ +12,0 V	min	max	n/a
22	Receiver dominant state differential input voltage range, bus biasing inactive (V _{Diff}), (if supported)	Table 9	+1,15	+8,0	V	-12,0 V \leq V _{CAN_L} \leq +12,0 V -12,0 V \leq V _{CAN_H} \leq +12,0 V	min	max	n/a
23	Differential internal resistance, receiver input resistance (R _{Diff})	Table 10	12	100	kΩ	$-2.0 \text{ V} \le \text{V}_{\text{CAN_H}} \le +7.0 \text{ V}$ $-2.0 \text{ V} \le \text{V}_{\text{CAN_L}} \le +7.0 \text{ V}$	max	min	Pass 7.5 RDIFF
24	Single ended internal resistance, receiver input resistance (R _{CAN_H} , R _{CAN_L})	Table 10	6	50	kΩ	$-2.0 \text{ V} \le \text{V}_{\text{CAN_H}} \le +7.0 \text{ V}$ $-2.0 \text{ V} \le \text{V}_{\text{CAN_L}} \le +7.0 \text{ V}$	max	min	Pass 7.5 RIN
25	Matching of receiver internal resistance (m_R)	Table 11	-0,03	+0,03	-/-	V _{CAN_H} = +5,0 V V _{CAN_L} = +5,0 V	max	min	Pass 7.5 RDIFF(M)
26	Loop delay (t _{Loop})	Table 12	-/-	255	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	-/-	Pass 7.6 tloop1, tloop2 Figure 8-3 ($C_L = 15 pF$)
27	Transmitted recessive bit width @ 2 Mbit/s (t _{Bit(Bus)}), (if supported)	Table 13	435	530	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	min	Pass 7.6 tbit(bus)
28	Received recessive bit width @ 2 Mbit/s (t _{Bit(RXD)}), (if supported)	Table 13	400	550	ns	$R_L = 60 \ \Omega, \ C_2 = 100 \ pF, \ C_{RXD} = 15 \ pF$	max	min	Pass 7.6 tbit(rxd)

No.	Parameter	Reference to ISO		Limits		Conditions ^d	Conformance test is passed if value		
		11898- 2:2016	Min	Max	Unit	^d Parameters within the conditions are aligned with Figure 4 p for test.	≤	2	Rating
29	Receiver timing symmetry @ 2 Mbit/s (Δt_{Rec}), (if supported)	Table 13	-65	+40	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	min	Pass 7.6 trec
30	Transmitted recessive bit width @ 5 Mbit/s (t _{Bit(Bus)}), (if supported)	Table 14	155	210	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	min	Pass 7.6 tbit(bus)
31	Received recessive bit width @ 5 Mbit/s (t _{Bit(RXD)}), (if supported)	Table 14	120	220	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	min	Pass 7.6 tbit(rxd)
32	Receiver timing symmetry @ 5 Mbit/s (Δt_{Rec}), (if supported)	Table 14	-45	+15	ns	$R_L = 60 \Omega$, $C_2 = 100 pF$, $C_{RXD} = 15 pF$	max	min	Pass 7.6 trec
33	Leakage current on CAN_H, CAN_L (I _{CAN_H} , I _{CAN_L}), maximum leakage currents, unpowered	Table 16	-10	+10	μΑ	V _{CAN_H} = 5 V, V _{CAN_L} = 5 V, All supply inputs connected to GND.	max	min	Pass 7.5 ILKG
34	CAN activity filter time, long (t _{Filter}), (if supported)	Table 20	0,5	5,0	μs	-/-	max	min	n/a
35	CAN activity filter time, short (t _{Filter}), (if supported)	Table 20	0,15	1,8	μs	-/-	max	min	n/a
36	Wake-up timeout (t _{Wake}), (if supported) c) For legacy implementations a minimum value of 350 µs is acceptable.	Table 20	800,0°	10000,0	μs	-/-	max	min	n/a
37	Timeout for bus inactivity (t _{Silece})	Table 20	0,6*10 ⁶	1,2*10 ⁶	μs	-/-	max	min	n/a
38	Bus Bias reaction time (t _{Bais})	Table 20	-/-	250,0	μs	-/-	max	-/-	n/a
39	Number of recessive bits before a new SOF shall be accepted (n _{Bits_idle}) (if supported)	Table 18	6	10	-/-	-/-	max	min	n/a
40	CAN FD data phase glitch filter (slow) (pGlitch _{Slow}) (if supported)	Table 19	5,00	17,50	% of arbit-ration bit time	-/-	min	max	n/a

No.	Parameter	Reference to ISO	Limits		Conditions ^d		test is passed if		
		11898- 2:2016	Min	Мах	Unit	d Parameters within the conditions are aligned with Figure 4 p for test.	≤	2	Rating
41	CAN FD data phase glitch filter (fast) (pGlitch _{Fast}) (if supported)	Table 19	2,50	8,75	% of arbit-ration bit time	-/-	min	max	n/a

5.2 Dynamic Tests (CAN IOPT v02d09)

Following test case numeration relates on the corresponding test specification.

IOPT 5.4 -Tests in Homogeneous Network with 16 Nodes - 2 Mbit/s w/o Low Power for "5 Mbit/s Devices"

No.	Tests in Homogeneous Network with 16 Nodes – 2 Mbit/s	Result	Comment
5.4.1	Test Flow 1 [Op. mode variation after] recovery at normal mode, failure application on startup		Performed in 8-node-network with 5 Mbit/s
5.4.1.1.x	GND Shift = 0V	n/a	
5.4.1.2.x	GND Shift = +1V	n/a	
5.4.1.3.x	GND Shift = -1V	n/a	
5.4.2	Test Flow 2 [Op. mode variation after] recovery at normal mode, failure application in normal mode		264 Test cases [tested without Op. mode variation]
5.4.2.1.x	GND Shift = 0V	E/Pass	
5.4.2.2.x	GND Shift = +1V	E/Pass	
5.4.2.3.x	GND Shift = -1V	E/Pass	
5.4.3	Test Flow 3 Op. mode variation before recovery at normal Mode, failure application in normal mode	n/a	No Low Power mode available
5.4.4	Test Flow 4 Op. mode variation with failure before recovery at normal mode, failure application on startup	n/a	No Low Power mode available
5.4.5	Test Flow 5 Op. mode variation with failure before recovery at low-power mode, failure application in normal mode	n/a	No Low Power mode available
5.4.6	Test Flow 6 Op. mode variation with failure before recovery at low-power mode, failure application in low-power mode	n/a	No Low Power mode available

No.	Tests in Homogeneous Network with 16 Nodes – 2 Mbit/s	Result	Comment
5.4.7	Test Flow 7 Op. mode variation with failure before recovery at normal mode, failure application in low-power mode	n/a	No Low Power mode available

Signs and symbols

E executed n/a not applicable

IOPT 5.4 –Tests in Homogeneous Network with 8 Nodes – 5 Mbit/s w/o Low Power

No.	Tests in Homogeneous Network with 8 Nodes – 5 Mbit/s with wake-up via bus	Result	Comment
5.4.1	Test Flow 1		264 Test cases
	Op. mode variation after recovery at normal mode, failure application on startup		[tested without Op. mode variation]
5.4.1.1.x	GND Shift = 0V	E/Pass	
5.4.1.2.x	GND Shift = +1V	E/Pass	
5.4.1.3.x	GND Shift = -1V	E/Pass	

IOPT 6.4 –Tests in Heterogeneous Network with 16 Nodes – 2 Mbit/s w/o Low Power for "5 Mbit/s Devices"

No.	Tests in Heterogeneous Network with 16 Nodes – 2 Mbit/s – Mix of 6*: 2xA / 3xB / 2xC / 2xD / 3xE / 4xIUT	Result	Comment
6.4.1	Test Flow 1 [Op. mode variation after] recovery at normal mode, failure application on startup		Performed in 8-node-network with 5 Mbit/s
6.4.1.1.x	GND Shift = 0V	n/a	
6.4.1.2.x	GND Shift = +1V	n/a	
6.4.1.3.x	GND Shift = -1V	n/a	
6.4.2	Test Flow 2 [Op. mode variation after] recovery at normal mode, failure application in normal mode		264 Test cases [tested without Op. mode variation]
6.4.2.1.x	GND Shift = 0V	E/Pass	
6.4.2.2.x	GND Shift = +1V	E/Pass	
6.4.2.3.x	GND Shift = -1V	E/Pass	
6.4.3	Test Flow 3 Op. mode variation before recovery at normal Mode, failure application in normal mode	n/a	No Low Power mode available
6.4.4	Test Flow 4 Op. mode variation with failure before recovery at normal mode, failure application on startup	n/a	No Low Power mode available
6.4.5	Test Flow 5 Op. mode variation with failure before recovery at low-power mode, failure application in normal mode	n/a	No Low Power mode available
6.4.6	Test Flow 6 Op. mode variation with failure before recovery at low-power mode, failure application in low-power mode	n/a	No Low Power mode available
6.4.7	Test Flow 7 Op. mode variation with failure before recovery at normal mode, failure application in low-power mode	n/a	No Low Power mode available

Signs and symbols

E executed

n/a not applicable

Abbreviations to identify components:

• 2 x A TJA1044GT

• 3 x B TJA1043T

• 2 x C TLE9252

• 2 x D TLE9255WSK

• 3 x E TLE9251

• 4 x IUT Implementation Under Test

Positions of the reference devices in 500 kbit/s and 2 Mbit/s reference environments:

Node:	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16
TRX:	В	Α	IUT	С	Е	D	IUT	В	Е	Α	IUT	В	С	D	IUT	Е

IOPT 6.4 -Tests in Heterogeneous Network with 8 Nodes - 5 Mbit/s with out Low Power

No.	Tests in Heterogeneous Network with 8 Nodes – 5 Mbit/s with wake-up via bus – Mix of 5*: 1xA / 2xB / 1xC / 2xD / 2xIUT	Result	Comment
6.4.1	Test Flow 1 Op. mode variation after recovery at normal mode, failure application on startup		264 Test cases [tested without Op. mode variation]
6.4.1.1.x	GND Shift = 0V	E/Pass	
6.4.1.2.x	GND Shift = +1V	E/Pass	
6.4.1.3.x	GND Shift = -1V	E/Pass	

Signs and symbols

E executed

Abbreviations to identify components:

• 1 x A TJA1044GT

• 2 x B TJA1043T

• 1 x C TLE9252

• 2 x D TLE9251

• 2 x IUT Implementation Under Test

Positions of the reference devices in 5 Mbit/s reference environments:

Node:	#1	#2	#3	#4	#5	#6	#7	#8
TRX:	A	В	IUT	С	В	D	IUT	D