

CA-IS2092A Isolated RS-485 Transceivers with Integrated DC-DC Converter

1. Features

High-Performance and Compliant with RS-485 EIA/TIA-485 Standard

- Data rate is up to 0.5Mbps
- 1/8 unit load enables up to 256 nodes on the bus
- 3.0V to 5.5V DC-DC supply voltage range(VDDP)
- 2.5V to 5.5V RS-485 supply input(VDDL)

• Integrated DC-DC Converter for Cable-side Power

- 3.3V and 5V output options
- High integration with internal transformer
- Soft-start reduces input inrush current
- Overload and short-circuit protection
- Thermal shutdown

• Robust Galvanic Isolation of Digital Signals

- 2.5kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
- ±150kV/μs typical CMTI
- High lifetime: >40 years

• Integrated Protection for Robust Communication

- ±8kV Human Body Model(HBM) ESD protection on bus I/O
- True fail-safe guarantees known receiver output
- Driver current limit and thermal shutdown
- Wide operating temperature range: -40°C to 125°C
- LGA16 Package

Safety Regulatory Approvals(pending)

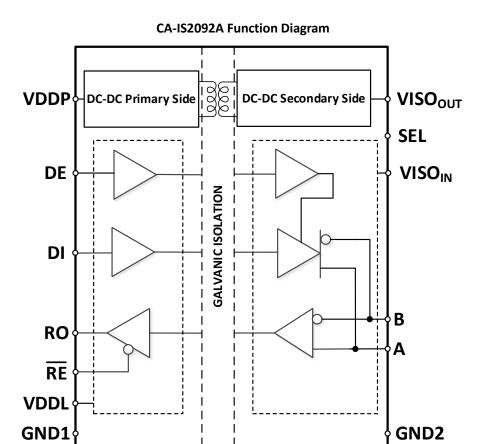
- 3535V_{PK} V_{IOTM} and 566V_{PK} V_{IORM} per DIN VDE V0884-11:2017-01
- 2.5kV_{RMS} isolation for 1 minute per UL 1577

2. Applications

- Industrial Automation Equipment
- Solar inverter
- Motor drivers
- Building automation

3. General Description

The CA-IS2092A family of devices is galvanically-isolated RS-485 transceivers with built-in isolated DC-DC converter, that eliminates the need for a separate isolated power supply in space constrained isolated designs. The transceivers have the logic input and output buffers separated by a silicon oxide (SiO₂) insulation barrier that provides up to 2.5kV_{RMS} (60s) of galvanic isolation and $\pm 150 \text{kV}/\mu\text{s}$ typical CMTI Isolation improves data communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports. An integrated DC-DC converter generates the 3.3V or 5V operating voltage for the cable-side.


The CA-IS2092A is designed for multi-drop operation with high ESD protection of up to ±8kV Human Body Model (HBM) on the bus pins. The receiver is 1/8-standard-unit load, allowing up to 256 transceivers (loads) on a common bus. The CA-IS2092A provides half-duplex transceivers. This device provides slow slew rate to minimize EMI and reflections, allowing for error-free data transmission up to 0.5Mbps. The individual logic supply input allows fully compatible 2.5V to 5.5V logic on logic input lines.

The CA-IS2092A device is available in LGA16 package and operates over -40°C to +125°C temperature range.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CA-IS2092A	LGA16	5.2mm x4.65mm

4. Ordering Information

Table 4-1. Ordering Information

Part Number	Full/half duplex	Data Rate (Mbps)	VISO _{out_} (V)	Package
CA-IS2092A	Half-Duplex	0.5	3.3/5.0	LGA16

Contents

1.	Features1	7.9.2. Receiver	
2.	Applications1	8. Parameter Measurement Information	14
3.	General Description1	9. Detailed Description	17
4.	Ordering Information2	9.1. Logic Input	17
5.	Revision History3	9.2. Fail-Safe Receiver	17
6.	Pin Configuration and Description4	9.3. Driver	18
		9.4. Protection Functions	18
7.	Specifications5	9.4.1. Signal Isolation and Power Isolation .	18
	7.1. Absolute Maximum Ratings ¹ 5	9.4.2. Thermal Shutdown	18
	7.2. ESD Ratings5	9.4.3. Current-Limit	19
	7.3. Recommended Operating Conditions5	10. Applications Information	20
	7.4. Thermal Information5	10.1. Overview	
	7.5. Insulation Specifications6	10.2. Typical Application	21
	7.6. Safety-Related Certifications (pending)7	10.3. 256 transceivers on the bus	21
	7.7. Electrical Characteristics8	10.4. PCB Layout	21
	7.7.1. Driver8	11. Package Information	23
	7.7.2. Receiver8	12. Soldering Temperature (reflow) Profile	
	7.8. Supply Current9		
	7.9. Switching Characteristics10	13. Tape And Reel Information	25
	7.9.1. Driver10	14. Important Statement	26

5. Revision History

Revision Number	Description	Page Changed
Version1.00	N/A	N/A

CHIPANALOC

6. Pin Configuration and Description

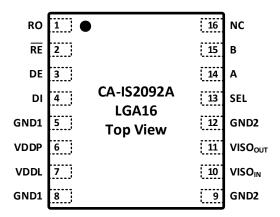


Figure 6-1. CA-IS2092A LGA16 Top View

Table 6-1. CA-IS2092A Pin Description and Functions

Name	Pin Number	Туре	Description
RO	1	Digital I/O	Receiver data output.
DE.	2	Digital I/O	Receiver output enable. Drive $\overline{\text{RE}}$ low or connect to GND1 to enable receiver. Drive $\overline{\text{RE}}$
KE	RE 2		high to disable receiver. RO is high-impedance when $\overline{\text{RE}}$ is high.
			Driver output enable. Drive DE high to enable bus driver outputs. Drive DE low or
DE	3	Digital I/O	connect to GND1 to disable bus driver outputs. DE has an internal weak pull-down to
			GND1.
			Driver input. With DE high, a logic low on DI forces the noninverting output (A) low and
DI	4	Digital I/O	the inverting output (B) high; a logic high on DI forces the noninverting output high and
			the inverting output low.
GND1	5, 8	GND	Logic-side ground. GND1 is the ground reference for logic-side, pin 5 and pin 8 are
GNDI	3,8		connected together internally.
VDDP	6	Power Supply	DC-DC converter supply input.
VDDL	7	Power Supply	Logic-side power input.
GND2	9, 12	GND	Cable-side ground. This is the ground reference for the RS-485 bus signals and DC-DC
GND2	9, 12	GND	converter on bus-side. Pin 9 and pin 12 are connected together internally.
VISO _{IN}	10	Power Supply	Cable side RS-485 input. Connect VISO _{IN} and VISO _{OUT} together on PCB.
VISO _{OUT}	11	Power Supply	Isolated DC-DC power supply output. Cable Side Power supply.
			Output voltage VISO _{OUT} , VISO _{IN} select pin:
SEL	13	Digital I/O	VISO _{OUT} = VISO _{IN} =5.0 V when SEL is shorted to VISO _{IN} ;
SEL	15	Digital I/O	VISO _{OUT} = VISO _{IN} =3.3 V when SEL is shorted to GND2 or floating;
			To improve the system's anti-interference ability, SEL pins do not recommend floating
Α	14	Bus I/O	Non-inverting RS-485 receiver input and driver output.
В	15	Bus I/O	Inverting RS-485 receiver input and driver output.
NC	16	-	No internal connection.

7. Specifications

7.1. Absolute Maximum Ratings¹

	PARAMETER	MIN	MAX	UNIT
VDDP, VDDL	Logic-side Supply Voltage ²	-0.5	6.0	V
VISO _{OUT} , VISO _{IN}	Cable-side Supply Voltage ²	-0.5	6.0	V
V _{IO1}	Logic Voltage (DI, DE, $\overline{\text{RE}}$, RO)	-0.5	VDDL + 0.5 ³	V
V _{IO2}	Cable-side logic voltage (SEL)	-0.5	VISO _{IN} + 0.5 ³	V
V _{BUS}	Bus voltage A,B	-8	13	V
Io	Output current on RO	-20	20	mA
T _J	Junction Temperature		150	°C
T _{STG}	Storage Temperature	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6V.

7.2. ESD Ratings

	PARAMETER		VALUE	UNIT
		Bus pins to GND2	±20	
V _{ESD} Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ¹	Other pins on cable-side	±5	kV
discharge		All pins on logic-side	±6	KV
	Charged device model (CDM), per JEDEC specification JESD22-C1		±2	

7.3. Recommended Operating Conditions

	PARAMETER	Min	Тур.	Max	Unit
VDDP ¹	Supply voltage on logic side	3.0	3.3 or 5.0	5.5	V
VDDL	Logic supply voltage	2.5	3.3 or 5.0	5.5	V
V _{OC}	Common mode voltage at bus pins: A, B, Y and Z	-7		12	V
V _{ID}	Differential input voltage V _{AB}	-12		12	V
RL	Differential load resistance	54			Ω
V _{IH}	Input high voltage (DI, DE, $\overline{\text{RE}}$ to GND1)	0.7 × VDDL			V
V _{IL}	Input low voltage (DI, DE, $\overline{ ext{RE}}$ to GND1)			0.3 x VDDL	V
V _{HYS}	Receiver input hysteresis		0.1 x VDDL		
DR	Data rate of the CA-IS2092A			0.5	Mbps
T _A	Ambient Temperature	-40		125	°C

Note:

7.4. Thermal Information

THERMAL METRIC		CA-IS2092A	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	TBD	°C/W

^{1.} VISO_{OUT} \leq V_{DDP}, this means if VDDP = 3.3V, SEL pin must be floating or connected to GND2 and set the VISO_{out} output to 3.3V; if VDDP = 5.0V, there is no connection limit for SEL pin.

7.5. Insulation Specifications

	PARAMETER	TEST CONDITIONS	VALUE A	UNIT
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	3.45	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	3.45	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	18	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	Material group	According to IEC 60664-1	II.	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 400 V _{RMS}	I-IV	1
		Rated mains voltage ≤ 600 V _{RMS}	I-III	1
DIN V V	/DE V 0884-11:2017-01 ²	-	L	1
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	V_{PK}
		AC voltage; time-dependent dielectric breakdown (TDDB) test	400	V_{RMS}
V_{IOWM}	Maximum operating isolation voltage	DC voltage	566	V_{DC}
		V _{TEST} = V _{IOTM} , t=60 s (qualification);	2525	<u> </u>
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = 1.2 \times V_{IOTM}$, t=1 s (100% product test)	3535	V_{PK}
V _{IOSM}	Maximum surge isolation voltage ³	Test method per IEC 60065, 1.2/50µs waveform,	5000	.,
		$V_{TEST} = 1.6 \times V_{IOSM}$ (production test)	5000	V_{PK}
		Method a, after input/output safety tests subgroup 2/3,		
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60s$;	≤5	
		$V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10s$		
		Method a, after environmental tests subgroup 1,		
a .	Apparent charge ⁴	$V_{ini} = V_{IOTM}$, $t_{ini} = 60s$;	≤5	200
q_{pd}	Apparent charge	$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10s$		pC
		Method b1, at routine test (100% production test) and		
		preconditioning (sample test)	≤5	
		$V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1s;$		
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1s$		
C _{IO}	Barrier capacitance, input to output ⁵	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~3	pF
		V _{IO} = 500V, T _A = 25°C	>1012	
R_{IO}	Isolation resistance , input to output ⁵	$V_{IO} = 500V, 100^{\circ}C \le T_A \le 125^{\circ}C$	>1011	Ω
		$V_{IO} = 500V \text{ at } T_S = 150^{\circ}C$	>109	
	Pollution degree		2	
UL 1577	7			
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60s (qualification),	2500	V_{RMS}
v ISO	Maximum withstanding isolation voltage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1s (100% production)	2300	V RMS

Notes:

- Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- 4. Apparent charge is electrical discharge caused by a partial discharge (pd).
- 5. All pins on each side of the barrier tied together creating a two-terminal device.

7.6. Safety-Related Certifications (pending)

VDE	UL	TUV
Certified according to DIN V VDE V 0884-11:2017-	Certified according to UL 1577	Basic insulation 2500 V _{RMS} for LGA16
01	Component Recognition Program	package
Basic insulation:		
Maximum transient isolation voltage: 3535V _{pk}		
Maximum repetitive peak isolation voltage: 566V _{pk}		
Maximum surge isolation voltage: 5000V _{pk}		
Certificate number: pending	Certificate number: pending	Certificate number: CN23RC4J 001

7.7. Electrical Characteristics

7.7.1. Driver

All typical specs are at, VDDL = VDDP, VISO_{IN} = VISO_{OUT}, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameter	Test Condition	Min	Тур	Max	Unit
11/ 1	Driver differential output voltage	I _O = 0mA, unloaded bus. SEL = LOW or float	3	3.3		V
V _{OD1}	Driver differential output voltage	I _O = 0mA, unloaded bus. SEL = HIGH	4.5	5		7 v
V _{OD2}	Driver differential output voltage	R_L =54 Ω , see Figure 8-1, SEL = LOW or float	1.5	2.3		V
VOD2	Driver differential output voltage	R_L =54Ω,see Figure 8-1, SEL = HIGH	2.1	3.6		7 V
V _{OD3}	Driver differential output voltage with bus load	V _{test} = -7V to 12V, see Figure 8-1	1.5			V
Δ V _{OD}	Change in differential output voltage between two states	R_L =54 Ω , or R_L =100 Ω , see Figure 8-1	-0.2		0.2	V
V _{OC}	Common-mode output voltage	R_L =54 Ω , or R_L =100 Ω , see Figure 8-1	1	VISO _{IN} /	3	V
ΔV _{OC}	Change in steady-state common-mode output voltage between two states	R_L =54 Ω , or R_L =100 Ω , see Figure 8-1	-0.2		0.2	V
I _{IH}	Hi-Z output leakage current	DI, DE = VDDL	-20		20	μΑ
I _{IL}	Input leakage current	DI, DE = 0V	-20		20	μΑ
I _{os}	Short-circuit output current	DE = VDDL, DI = 0V or VDDL, V_A or V_B = -7V	150		150	mA
105	Short-circuit output current	DE = VDDL, DI = 0V or VDDL, V _A or V _B = 12V	130		130	III.A
CMTI	Common mode transient immunity	V _{CM} = 1.5kV; See Figure 8-6.	100	150		kV/μs

7.7.2. Receiver

All typical specs are at, VDDL = VDDP, VISO_{IN} = VISO_{OUT}, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameter	Test Condition	Min	Тур.	Max	Unit
V _{OH}	Output logic high voltage	V _{DDL} =5V, I _{OH} =4mA	V_{DDL} -0.4	4.8		V
VOH	Output logic mgm voltage	V _{DDL} =3.3V, I _{OH} =-4mA	V_{DDL} -0.4	3.1		V
V _{OL}	V _{DDL} =5V, I _{OL} =4mA			0.2	0.4	V
V OL	Output logic low voltage	V _{DDL} =3.3V, I _{OL} =4mA		0.2	0.4	V
I _{IH}	Input current on $\overline{ ext{RE}}$ pin	V _{IH} = VDDL	-20		20	μΑ
I _{IL}	Input current on RE pin	V _{IL} = 0V	-20		20	μΑ
V _{IT+(IN)}	Positive-going input threshold voltage			-110	-50	mV
V _{IT-(IN)}	Negative-going input threshold voltage		-200	-140		mV
V _{I(HYS)}	Receiver input hysteresis			30		mV
		V_A or $V_B = 12V$, other inputs = 0 V		75	125	
	Bus input current	V_A or V_B =12V, V_{DDL} = 0 V, other inputs = 0 V		80	125	
l ₁	Bus input current	V_A or $V_B = -7$ V, other inputs = 0 V	-100	-40		μΑ
		V_A or $V_B = -7$ V, $V_{DDL} = 0$ V, other inputs = 0 V	-100	-40		
R _{ID}	Differential input resistance	A, B, -7V < V _{CM} < 12V	96			ΚΩ
C _D	Differential input capacitance	Sine-wave input, $f = 1$ MHz, $V_1 = 0.4 \times \sin(2\pi ft)$.		12		nE
CD		Measure C _D at A and B pins.	12		pF	
Cı	Input capacitance (input to GND1)	VI = $0.4 \times \sin(2\pi ft)$, f = 1MHz		18		pF

7.8. Supply Current

All typical specs are at, VDDL = VDDP, VISO_{IN} = VISO_{OUT}, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameter		Min	Тур	Max	Unit		
		$I_{ISO} = 0$ to 80 mA, $V_{DDP} = 9$	4.5	5	5.5			
√ _{ISO} Isola	ated supply output	$I_{ISO} = 0$ to 100mA, $V_{DDP} = 0$	3	3.3	3.6	V		
		$I_{ISO} = 0$ to 50mA, $V_{DDP} =$	3.3V, SEL = GND2	3	3.3	3.6		
/DDP _{UVLO+}	+	VDDP rising		2.5	2.7	2.9		
/DDP _{UVLO-}		VDDP falling		2.1	2.3	2.5		
/DDP _{UVLO} _	_HYS	VDDP threshold			0.4		V	
/DDL _{UVLO+}	-	VDDL rising		2.05	2.25	2.45	7 °	
/DDL _{UVLO-}		VDDL falling		1.9	2.1	2.3		
/DDL _{UVLO} _	HYS	VDDL threshold			0.15			
Quiescei	nt current, both driver	and receiver enabled (RE=0V , DE= VDDL , DI= 0V)					
			VDDP = 3.3V, SEL = GND2		15	20		
Innn '		R _L = NC	VDDP = 5.0V, SEL = GND2		10	15		
	Supply current		VDDP = 5.0V, SEL = VISO _{IN}		15	20		
			VDDP = 3.3V, SEL = GND2		100	135		
		$R_L = 54\Omega$	VDDP = 5.0V, SEL = GND2		80	110]	
			VDDP = 5.0V, SEL = VISO _{IN}		145	195	mA	
	on logic side		VDDP = 3.3V, SEL = GND2		75	90	T IIIA	
		$R_{L} = 100\Omega$ $R_{L} = 120\Omega$	VDDP = 5.0V, SEL = GND2		55	75		
			VDDP = 5.0V, SEL = VISO _{IN}		100	130		
			VDDP = 3.3V, SEL = GND2		60	80		
			VDDP = 5.0V, SEL = GND2		50	65		
			VDDP = 5.0V, SEL = VISO _{IN}		85	115		
Average	current, both driver a	nd receiver enabled (DE	= VDDL, RE = 0V), DI input 250kHz square-wave	e, 50% duty cyc	cle			
			VDDP = 3.3V, SEL = GND2		20	30		
		R _L = NC	VDDP = 5.0V, SEL = GND2		20	65		
			VDDP = 5.0V, SEL = VISO _{IN}		30	45		
			VDDP = 3.3V, SEL = GND2		100	135		
		$R_L = 54\Omega$	VDDP = 5.0V, SEL = GND2		80	110		
1	Supply current		VDDP = 5.0V, SEL = VISO _{IN}		145	200	mA	
I _{DDP}	on logic side		VDDP = 3.3V, SEL = GND2		75	95		
		$R_L = 100\Omega$	VDDP = 5.0V, SEL = GND2		55	80		
			VDDP = 5.0V, SEL = VISO _{IN}		110	140		
			VDDP = 3.3V, SEL = GND2		70	90		
		$R_L = 120\Omega$	VDDP = 5.0V, SEL = GND2		50	75		
			VDDP = 5.0V, SEL = VISO _{IN}		95	130		

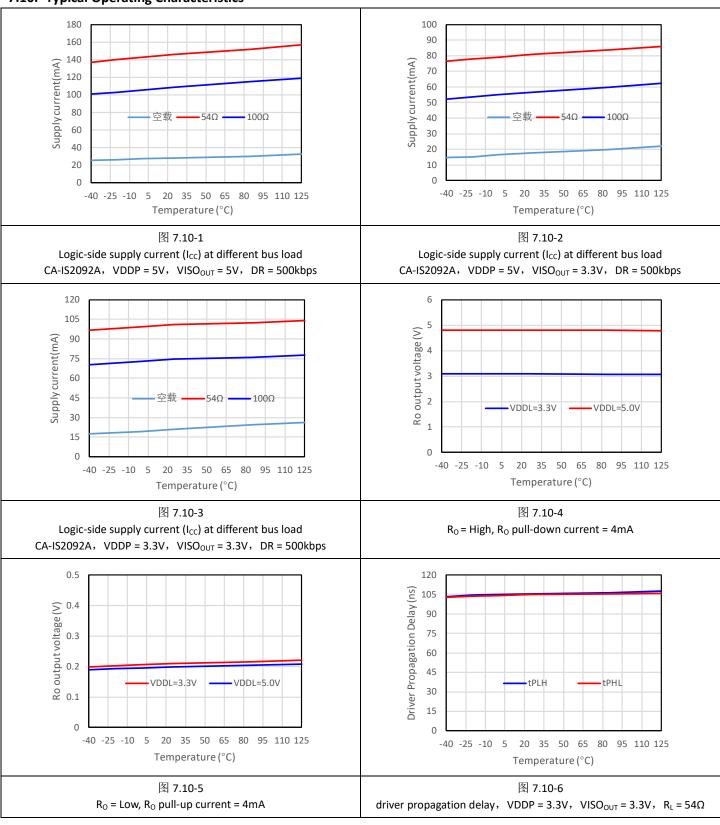
7.9. Switching Characteristics

7.9.1. Driver

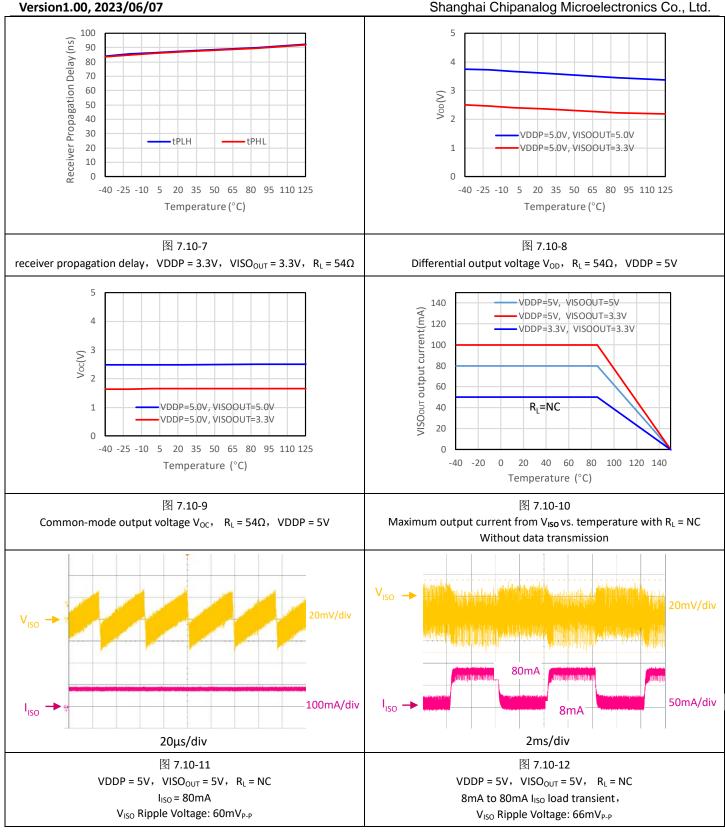
All typical specs are at, VDDL = VDDP, VISO_{IN} = VISO_{OUT}, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameters	Test conditions	Min	Тур	Max	Unit
t _{PLH} ,t _{PHL}	Driver Propagation Delay			100	250	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2			20	ns
t _r , t _f	Differential output rise/full time			150	500	ns
t _{PZH} ,t _{PZL}	Driver enable time	Son Figure 9 2		30	100	ns
t _{PHZ} ,t _{PLZ}	Driver disable time	See Figure 8-3		30	100	ns

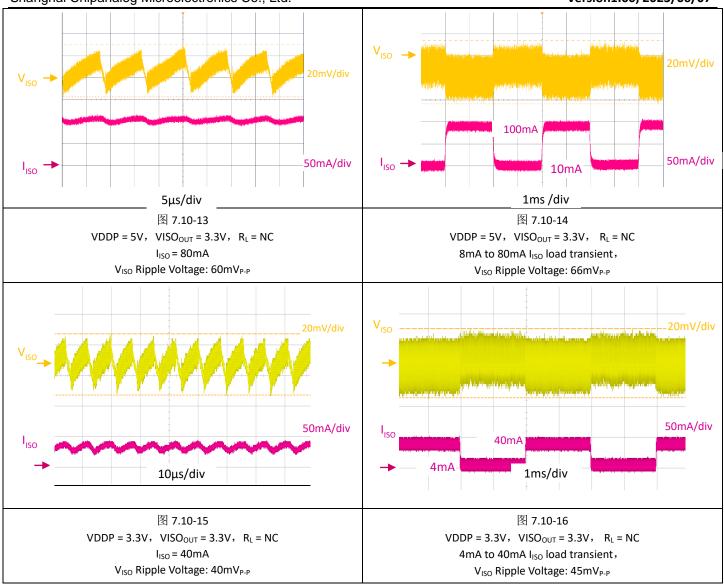
7.9.2. Receiver


All typical specs are at, VDDL = VDDP, VISO_{IN} = VISO_{OUT}, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameters	Test conditions	Min	Тур	Max	Unit
t _{PLH} ,t _{PHL}	Receiver propagation delay			80	150	ns
t _{PWD}	Receiver output skew t _{PLH} - t _{PHL}	See Figure 8-4.			8	ns
t _r , t _f	Receiver output rise/full time			2.5	4	ns
t _{PHZ} ,t _{PLZ}	Receiver disable time	Con Figure 9 F		5	20	ns
t _{PZH} ,t _{PZL}	Receiver enable time, DE = 0V	See Figure 8-5.		5	20	ns


7.10. Typical Operating Characteristics

Shanghai Chipanalog Microelectronics Co., Ltd.


Version1.00, 2023/06/07

Shanghai Chipanalog Microelectronics Co., Ltd.

8. Parameter Measurement Information

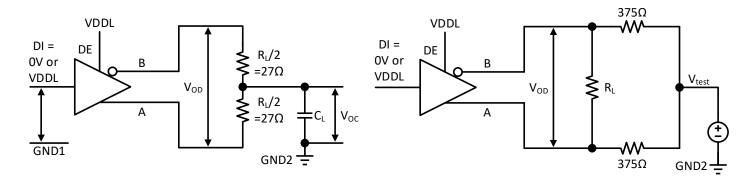


Figure 8-1. Driver DC Test Circuit

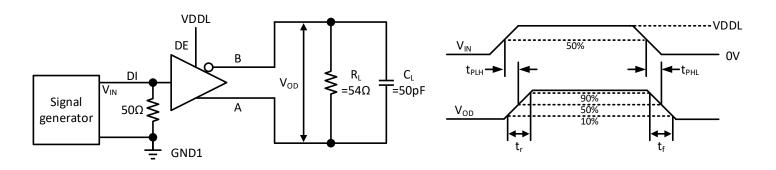


Figure 8-2. Driver Propagation Delays

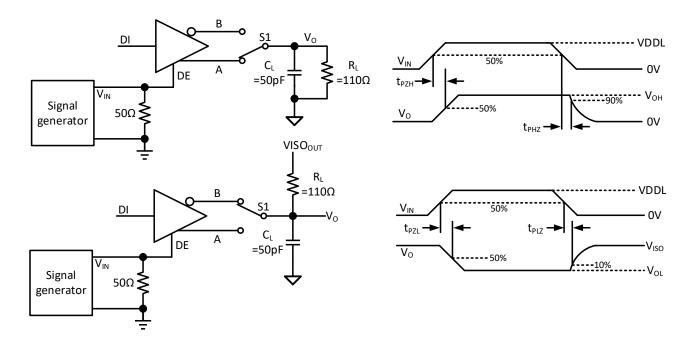


Figure 8-3. Driver Enable and Disable Times

Shanghai Chipanalog Microelectronics Co., Ltd.

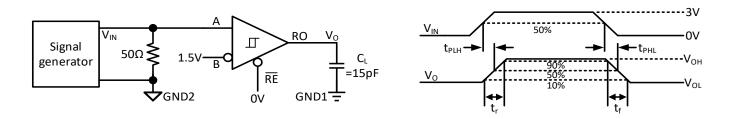


Figure 8-4. Receiver Propagation Delays

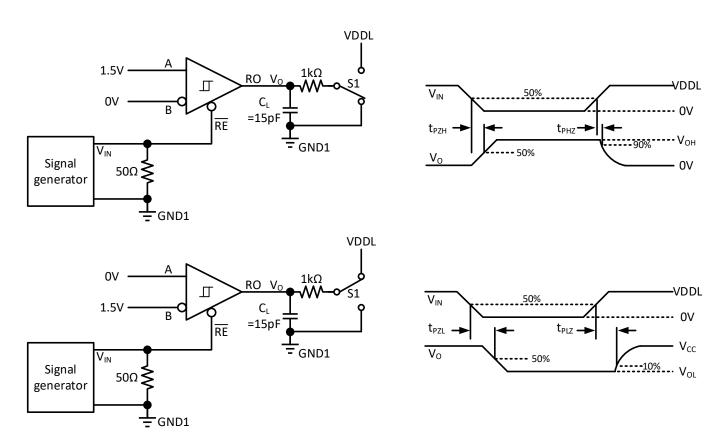


Figure 8-5. Receiver Enable and Disable Times

Notes:

- 1. $R_L = 54 \Omega$ for RS-485
- 2. C_L includes external circuit (fixture and instrumentation etc.) capacitance.

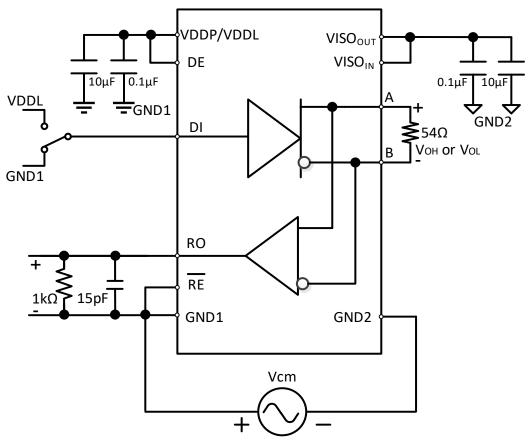


Figure 8-6. Common Mode Transient Immunity (CMTI) Test for the Half-duplex

9. Detailed Description

The CA-IS2092A isolated half-duplex RS-485 transceiver provides up to 2.5kV_{RMS} of galvanic isolation between the cable side (bus-side) and the controller side (logic-side) of the transceiver. This device features up to 150kV/µs common mode transient immunity, allows up to 0.5Mbps communication across an isolation barrier. Power isolation is achieved with an integrated DC-DC convertor to generate a regulated 3.3V or 5V supply for the cable-side circuit. The CA-IS2092A does not require any external components other than bypass capacitors and bus termination resistors to realize an isolated RS-485 port. Robust isolation coupled with extended ESD protection enables efficient communication in noisy environments, making them ideal for long distance transmission and multi-drop communication in a wide range of applications such as motor drives, PLC communication modules, PV Inverter etc.Two mechanisms against excessive power dissipation caused by faults or bus contention. The first, over-current protection on the output stage, provides immediate protection against short circuits over the entire common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state.

9.1. Logic Input

The CA-IS2092A device includes three logic inputs on the logic side: receiver enable, driver enable and driver digital input. The driver enable control DE pin has an internal weak pull-down to GND1, while the digital input DI and receiver enable pins have an internal pull-up to VDDL, see Figure 9-1 the input equivalent circuit.

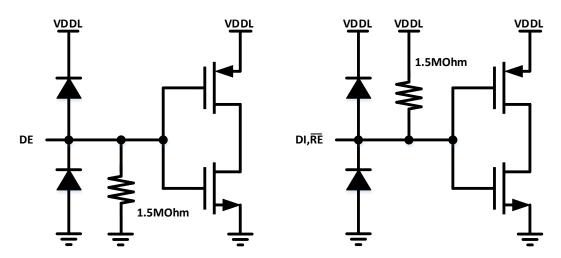


Figure 9-1. Input equivalent circuit

9.2. Fail-Safe Receiver

The receiver reads the differential input from the bus line (A and B) and transfers this data as a single-ended, logic-level output RO to the controller. Driving the enable input \overline{RE} low to enable the receiver; Driving \overline{RE} logic high to disable the receiver. RO is high impedance when \overline{RE} is logic high. The \overline{RE} pin has an internal pull-up resistor to VDDL.

The CA-IS2092A RS-485 transceiver does not require external fail-safe bias resistors because a true fail-safe feature is integrated into the device. In true fail-safe, the receiver's positive-going input threshold is $V_{IT+(IN)}$ (-50mV, max.), if the differential receiver input voltage of V_A - V_B is greater than or equal to $V_{IT+(IN)}$, RO is logic high when \overline{RE} is low; RO is logic low when V_A - V_B is less than or equal to $V_{IT-(IN)}$ (-200mV, min.) in case the receiver is enabled; thereby eliminating the need for fail-safe bias resistors while complying fully with the RS-485 standard, see Table 9-1 the receiver truth table. Fail-safe feature is used to keep the receiver's output in a defined state when the receiver is not connected to the cable, the cable has an open or the cable has a short.

Table 9-1. Receiver Truth Table

Differential Input: $V_{ID} = (V_A - V_B)$	Enable (RE)	Receiver Output (RO)
$V_{\text{IT+(IN)}} \leq V_{\text{ID}}$	L	Н
$V_{\text{IT-(IN)}} < V_{\text{ID}} < V_{\text{IT+(IN)}}$	L	Indeterminate
$V_{ID} \leq V_{IT-(IN)}$	L	L
X	Н	Hi-Z
Open/Short/Idle	L	Н
X	Open	Hi-Z

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- RE has an internal weak pull-up to V_{DDL}.

9.3. Driver

The transmitter converts a single-ended input signal (DI) from the local controller to differential outputs on the bus lines A and B. The truth table for the transmitter is provided in Table 9-2, the driver enable control DE pin has an internal weak pull-down to GND1, see Figure 9-1 the input equivalent circuit; while the digital input DI pin has an internal pull-up to V_{DDL} . The driver outputs and receiver inputs on the bus side are protected from $\pm 8kV$ electrostatic discharge (ESD) to GND2, as specified by the Human Body Model (HBM). The driver outputs also feature short-circuit protection and thermal shutdown.

Table 9-2. Transmitter Truth Table

Driver Input	Enable Input	Driver Output		
(DI)	(DE)	Α	В	
Н	Н	Н	L	
L	Н	L	Н	
X	L	Hi-Z	Hi-Z	
X	OPEN	Hi-Z	Hi-Z	
OPEN	Н	Н	L	

Notes:

- X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- 2. DE pin has an internal weak pull-down to GND1, and DI pin has an internal pull-up to V_{DDL} .

9.4. Protection Functions

9.4.1. Signal Isolation and Power Isolation

The CA-IS2092A device integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains. Also, the power isolation is achieved with an integrated DC-DC convertor to generate a regulated 3.3V or 5V supply for the cable-side.

9.4.2. Thermal Shutdown

If the junction temperature of the CA-IS2092A device exceeds the thermal shutdown threshold $T_{J(shutdown)}$ (180°C, typ.),output Voltage VISO_{OUT} shutdown the driver outputs go high-impedance state. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range (< 160°C, typ.) of the device.

9.4.3. Current-Limit

The CA-IS2092A protects the transmitter output stage against a short-circuit to a positive or negative voltage over the common mode voltage range of -7V to 12V by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit fault. The transmitter returns to normal operation once the short-fault is removed.

10. Applications Information

10.1. Overview

The CA-IS2092A half-duplex RS-485 transceivers commonly used for asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the configuration of different operating modes. Because of high peak currents flowing through V_{DDP} and V_{ISO} supplies, bulk capacitance of typical $10\mu F$ (or at least $4.7\mu F$) is recommended on both pins. Higher values of bulk capacitors are helpful to reduce noise and ripple further and enhance performance, see Figure 10-1 the typical application circuit. Make sure there is no data transmission during the CA-IS2092A power up.

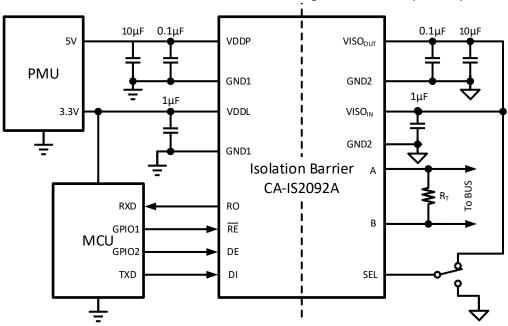


Figure 10-1. Typical application circuit

10.2. Typical Application

An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. As seen in the following typical network application circuit, Figure 10-2.In application, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For RS-485 network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. To minimize reflections, terminate the line at both ends with a termination resistor (120Ω in the typical application circuits), whose value matches the characteristic impedance (Z_0) of the cable, and keep stub lengths off the main line as short as possible. As a general rule moreover, termination resistors should be placed at both far ends of the cable. This method, known as parallel termination, generally allows for higher data rates over longer cable length.

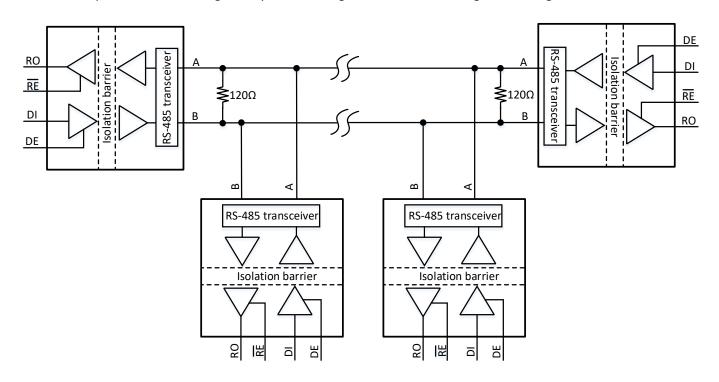


Figure 10-2. Typical isolated half-duple RS-485 application circuit

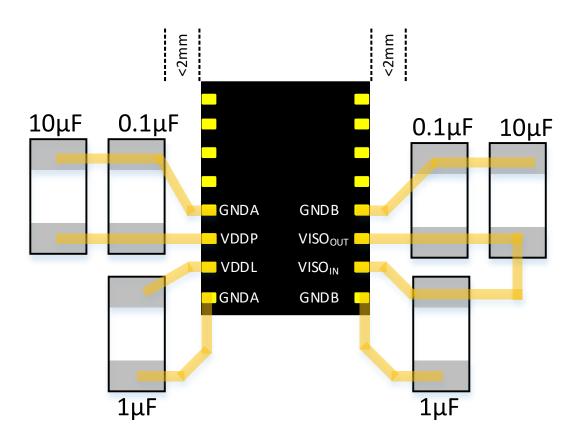
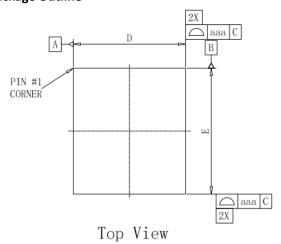
10.3. 256 transceivers on the bus

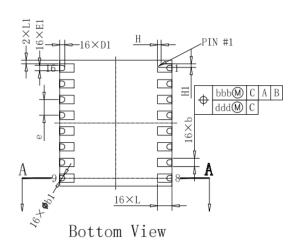
The maximum number of transceivers and receivers allowed depends on how much each device loads down the system. All devices connected to an RS-485 network should be characterized in regard to multiples or fractions of unit loads. According to RS-485 standard, the maximum number of unit loads allowed one twisted pair, assuming a properly terminated cable with a characteristic impedance of 120Ω or more, is 32. The CA-IS2092A transceivers have a 1/8-standard-unit load ($96k\Omega$) receiver, which allows up to 256 transceivers connected in parallel on one communication line.

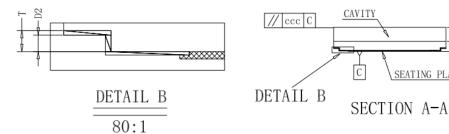
10.4. PCB Layout

Careful PCB layout is critical to achieve clean and stable communication operation. It is recommended to design an isolation channel underneath the isolator that is free from ground and signal planes. Any galvanic or metallic connection between the cable side and logic side will defeat the isolation. To make sure device operation is reliable at all data rates and supply voltages, the minimum $0.1\mu\text{F}/10\mu\text{F}$ decoupling capacitors between VDDP and GND1, between VISO_{OUT} and GND2 are recommended. For the individual logic supply input VDDL and VISO_{IN}, we recommend to use a $1\mu\text{F}$ ceramic capacitors between VDDL pin and GND1,VISO_{IN} pin and GND2.Place the bypass capacitors, and the CA-IS2092A IC on the same PCB layer. Place

decoupling capacitors as close as possible to the CA-IS2092A device pins, see Figure 10-3 recommended components placement for the PCB layout. The paths must be wide and short to minimize inductance, also any via holes must be avoided on these paths.


Figure 10-3. Recommended PCB Layout


11. Package Information

LGA16 Package Outline

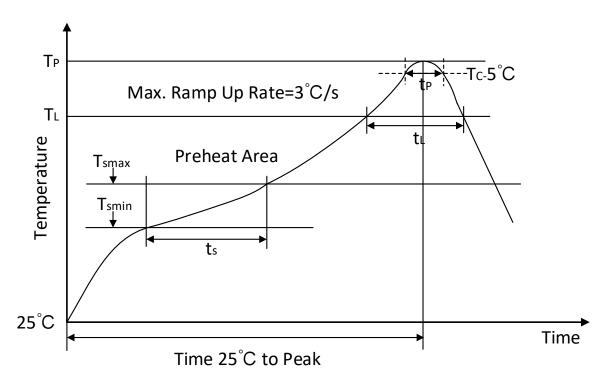
SEATING PLANE

symbol	Dime	ension i	n mm	Dimension in inch						
Symbol	MIN	NOM	MAX	MIN	NOM	MAX				
A	0.890	0.990	1.090	0.035	0.039	0.043				
С	0.370	0.410	0.450	0.015	0.016	0.018				
D	4.550	4.650	4.750	0.179	0.183	0. 187				
Е	5. 100	5. 200	5. 300	0.201	0. 205	0.209				
D1	0.185	0.215	0.245	0.007	0.008	0.010				
E1	0.200	0.230	0.260	0.008	0.009	0.010				
D2	0.060	0.085	0.110	0.002	0.003	0.004				
Н		0.150			0.006					
H1		0.150			0.006					
L	0.500	0.600	0.700	0.020	0.024	0.028				
L1	0.075	075 0.150		0.003	0.006	0.009				
е		0.650			0.026					
b	0.300	0.350	0.400	0.012	0.014	0.016				
b1	0.200	0.230	0.260	0.008	0.009	0.010				
T	0.083			0.003						
aaa		0.100		0.004						
bbb		0.150	<u> </u>	0.006						
ссс		0.100	<u> </u>	0.004						
ddd		0.080		0.003						

Note:

1. All dimensions are in millimeters, angles are in degrees.

12. Soldering Temperature (reflow) Profile



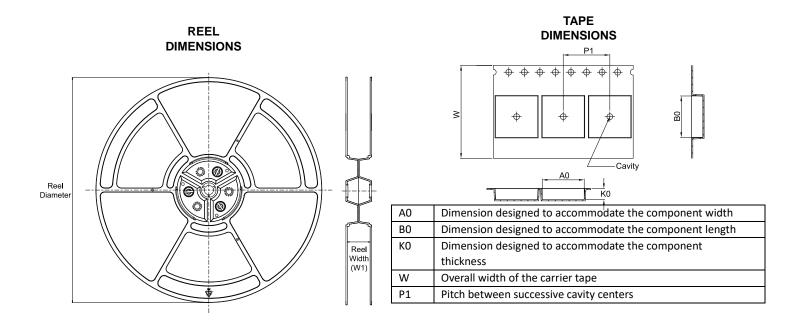
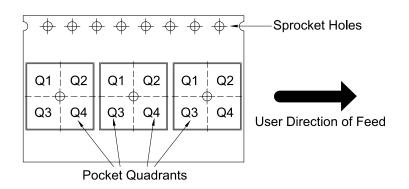

Figure. 12-1 Soldering Temperature (reflow) Profile

Table. 12-1 Soldering Temperature Parameter


Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 °C to Peak)	3°C /second max
Time of Preheat temp(from 150 °C to 200 °C	60-120 second
Time to be maintained above 217 °C	60-150 second
Peak temperature	260 +5/-0 °C
Time within 5°C of actual peak temp	30 second
Ramp-down rate	6 °C /second max.
Time from 25°C to peak temp	8 minutes max

13. Tape And Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS2092A	LGA16 4.65x5.2	Α	16	3000	330	12.4	4.95	5.50	1.29	8.0	12.0	Q1

14. Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com