

CA-IS1044S 3.75kV_{RMS} Isolated CAN Transceivers

1 Features

- Meets the ISO 11898-2 physical layer standards
- Integrated protection increases robustness
 - 3kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
 - ±100kV/μs typical CMTI
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Transmitter dominant timeout prevents lockup, data rates down to 5.5kbps
 - Thermal shutdown
- Date rate is up to 2Mbps
- Low loop delay: 140ns (typical), 210ns (maximum)
- 2.5V to 5.5V I/O voltage range, supports 2.5V, 3V,
 3.3V and 5V CAN controller interface
- Ideal passive behavior when unpowered
- Wide operating temperature range: -40°C to 125°C
- Narrow-body SOIC8 (S)package
- Safety Regulatory Approvals
 - UL1577 certification
 - DIN VVDE V 0884-17 basic isolation

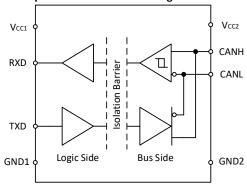
2 Applications

- Industrial Controls
- Building Automation
- Security and Protection System
- Transportation
- Automotive Gateway
- Body Electronics and Lighting
- Battery Management System (BMS)

3 General Description

The CA-IS1044S device is galvanically-isolated controller area network (CAN) transceiver that has superior isolation and CAN performance to meet the needs of the industrial applications. This device has the logic input and output buffers separated by a silicon oxide (SiO₂) insulation barrier that provides galvanic isolation. Isolation improves communication by breaking ground loops and reduces

noise where there are large differences in ground potential between ports. The CA-IS1044S is available in small 8-pin SOIC package and features up to $3750V_{RMS}$ (60s) of galvanic isolation.


These transceivers operate up to 2Mbps data rate and feature integrated protection for robust communication, including current limit, thermal shutdown, and the extended ±58V fault protection on the CAN bus for equipment where overvoltage protection is require. The dominant timeout detection prevents bus lockup caused by controller error or by a fault on the TXD input. These CAN receivers also incorporate an input common-mode range (CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V. All devices operate over -40°C to +125°C temperature range.

The CA-IS1044S is in a standard 8-pin narrow body SOIC package and operates over the -40°C to +125°C temperature range.

Device information

Part Number	Package	Package size (nominal value)
CA-IS1044S	SOIC8-NB(S)	4.90 mm × 3.90 mm

Simplified functional block diagram

4 Ordering Information

Table 4-1 Ordering Information

Part #	V _{cc1} (V)	V _{CC2} (V)	Data Rate (kbps)	Galvanic Isolation (V _{RMS})	Package
CA-IS1044S	2.5~5.5	4.5~5.5	2000	3750	SOIC8-NB

Contents

1	Feat	tures1	9	Deta	iled De
2	Арр	lications 1		9.1	Over
3	Gen	eral Description 1		9.2	CAN
4	Ord	ering Information 2		9.3	Rece
5		ision history 3		9.4	Trans
6		Configuration and Functions 4		9.5	Prote
7	Spe	cifications 5		_	.5.1 .5.2
	7.1	Absolute Maximum Ratings ¹ 5		_	.5.2 .5.3
	7.2	ESD Ratings5		_	.5.4
	7.3	Recommended Operating Conditions5	10		Applica
	7.4	Thermal Information5	11		Packag
	7.5	Insulation Specifications6	12		Solderi
	7.6	Safety-Related Certifications7	13		Tape a
	7.7	Electrical Characteristics8	14		•
	7.8	Switching Characteristics9	14		Import
8	Para	ameter Measurement Information10			

9	De	tailed	Description	13
	9.1	0	verview	13
	9.2	CA	AN Bus Status	13
	9.3	Re	eceiver	13
	9.4	Tr	ansmitter	13
	9.5	Pr	otection Functions	14
		9.5.1	Signal Isolation and Protection	14
		9.5.2	Thermal Shutdown	14
		9.5.3	Current-Limit	14
		9.5.4	Transmitter-Dominant Timeout	14
LO		App	lication Information	15
L1		Pack	rage Information	17
12		Sold	ering Temperature (reflow) Profile .	18
13	Tape and Reel Information			
L 4		lmp	ortant Statement	20

5 Revision history

Revision Number	Description		Page Changed
Version 1.00	N/A		N/A
Version 1.01	Changed isolation voltage to 3000V _{RMS} , Changed MTI typical value to 100kV/μs.		1, 6
Version 1.02	Descriptions are changed and style changed, no data change.		NA
Version 1.03	Updated certification information	2023/08//20	6
Version 1.04	Update VDE information	2023/03//23	6, 7
Version 1.05	Update VDE, UL, information	2023/04/16	1, 6, 7

6 Pin Configuration and Functions

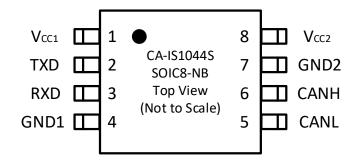


Figure 6-1 CA-IS1044S Pin Configuration

Table 6-1 CA-IS1044S Pin Configuration and Description

Pin name Pin number		Туре	Description
riii iiaiiie	SOIC8	Туре	Description
V _{CC1}	1	Power supply	Power supply input for the logic side. Bypass V_{CC1} to GND1 with a $0.1\mu\text{F}$ capacitor as close to the device as possible.
TXD	2	Digital I/O	Transmitter data input. CANH and CANL are in the dominant state when TXD
TAD	Z Digital I/O		is low. CANH and CANL are in the recessive state when TXD is high.
RXD	3	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is
KAD	3	Digital I/O	low when the bus is in the dominant state.
GND1	4	Ground	Logic side ground.
CANL	5	Differential I/O	Low-level CAN differential line.
CANH	6	Differential I/O	High-level CAN differential line.
GND2	7	Ground	Bus side ground.
V	8	Dower supply	Power supply input for the bus side. Bypass V _{CC2} to GND2 with a 0.1μF
V _{CC2}	8	Power supply	capacitor as close to the device as possible.

7 Specifications

7.1 Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V _{CC1} or V _{CC2}	Power supply voltage ²	-0.5	7.0	V
TXD or RXD to GND1	Logic side voltage (RXD, TXD)	-0.5	$V_{CC1} + 0.5^3$	V
CANH or CANL to GND2 Differential voltage between CANH and CANL	Bus side voltage (CANH and CANL)	-58	58	V
I _O	Receiver output current	-15	15	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not be exceed 7 V.

7.2 ESD Ratings

			Numerical value	Unit
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, bus pins to GND2	±7000	
V .	V _{ESD} Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all other pins ¹	±4000	W
VESD		Direct Contact Model, per IEC61000-4-2, bus pins to GND2	±8000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±2000	

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V CDM allows safe manufacturing of standard ESD control process.

7.3 Recommended Operating Conditions

	Parame	eters	MIN	TYP	MAX	Unit
V _{CC1}	Logic side power voltage		2.5	3.3/5.0	5.5	V
V _{CC2}	Bus side power voltage		4.5	5.0	5.5	V
V _I or V _{IC}	Voltage at bus pins (separately or	common mode)	-30		30	V
V _{IH}	Input high voltage	Driver (TXD)	0.7 x V _{CC1}			V
V _{IL}	Input low voltage	Driver (TXD)			0.3 x V _{CC1}	V
V_{ID}	Differential input voltage		-15		15	V
I _{ОН}	High-level output current	Receiver (RXD)	-4			mA
I _{OL}	Low-level output current	Receiver (RXD)			4	mA
T _A	Ambient temperature		-40		125	°C
T _J	Junction temperature		-40		150	°C
P _D	Total power dissipation	V _{CC1} = 5.5V, V _{CC2} = 5.25V, T _A = 125°C, R _L =			200	mW
P _{D1}	Logic side power dissipation	60Ω, TXD input is 500kHz, 50% duty cycle			25	mW
P _{D2}	Bus side power dissipation	square wave			175	mW
T _{J(shutdown)}	Thermal shutdown temperature ¹			190		°C

7.4 Thermal Information

Heat meter		SOIC8-NB	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	125	°C/W

7.5 Insulation Specifications

	Parameters	Test conditions	Value SOIC8	Unit
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	4	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	4	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	Per IEC 60664-1	I	
		Rated mains voltage ≤ 150 V _{RMS}	I-IV	
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rated mains voltage ≤ 300 V _{RMS}	1-111	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600 V _{RMS}	N/A	1
		Rated mains voltage ≤ 1000 V _{RMS}	N/A	
DIN V V	VDE V 0884-17:2021-10			· L
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	V_{PK}
W	Navigous againstics is alsticated to the second	AC voltage; time-dependent dielectric breakdown (TDDB) test	400	V_{RMS}
V _{IOWM}	Maximum operating isolation voltage	DC voltage	566	V_{DC}
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, t=60 s (certified); $V_{TEST} = 1.2 \times V_{IOTM}$, t=1 s (100% product test)	5300	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ²	Test method in accordance with IEC 62368-1, 1.2/50 μ s waveform, V_{TEST} = 1.3× V_{IOSM} (certified)	4076	V _{PK}
		Method a, after input/output safety test of the subgroup 2/3, $V_{ini} = V_{IOTM}, t_{ini} = 60 \text{ s};$ $V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10 \text{ s}$	≤5	
q _{pd}	Apparent charge ³	Method a, after environmental test of the subgroup 1, $V_{ini} = V_{IOTM}, t_{ini} = 60 \text{ s};$ $V_{pd(m)} = 1.3 \times V_{IORM}, t_m = 10 \text{ s}$	≤5	pC
		Method b, at routine test (100% production test) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 \text{ s};$ $V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1 \text{ s}$	≤5	
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~0.5	pF
-10		V _{IO} = 500 V, T _A = 25°C	>10 ¹²	I.
R _{IO}	Isolation resistance ⁴	$V_{IO} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>10 ¹¹	Ω
- 10	isolation resistance	$V_{IO} = 500 \text{ V at } T_S = 150^{\circ}\text{C}$	>109	1
	Pollution degree	10 3	2	
UL 157		<u> </u>	_	1
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification) $V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3750	V _{RMS}

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization test.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

7.6 Safety-Related Certifications

VDE	UL
Certified according to DIN EN IEC60747-17(VDE 0884-17):2021-10; EN IEC60747-17:2020+AC:2021	UL1577 device certification
Maximum transient isolation voltage: 5300V _{pk} Maximum repetitive peak isolation voltage: 566V _{pk} Maximum surge isolation voltage: 4076V _{pk}	Maximum withstanding isolation voltage 3750V _{RMS}
Certification number: 40052786 (basic isolation)	Certification number: E511334

7.7 Electrical Characteristics

Over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with $V_{CC1} = V_{CC2} = 5$ V.

Parameters		Test conditions	MIN	TYP	MAX	Unit			
Power supply current									
		V _I = 0V , V _{CC1} = 2.25V ~ 2.75 V		2.6	3.5				
		V _I = V _{CC1} , V _{CC1} = 2.25V ~ 2.75 V		1.5	2.1	mA			
I _{CC1} Logic side power supply current		$V_1 = 0V$, $V_{CC1} = 3.0 V \sim 5.5 V$		2.7	3.5				
		$V_1 = V_{CC1}$, $V_{CC1} = 3.0 \text{ V} \sim 5.5 \text{V}$		1.6	2.1				
I Bus side as a superior by a superior	Dominant	$V_1 = 0 \text{ V}$, $R_L = 60 \Omega$		40	70	m A			
I _{CC2} Bus side power supply current	Recessive	$V_I = V_{CC1}$		2	5	mA			
UV _{VCC2+} V _{CC2} UVLO threshold voltage		Rise		4.2	4.4				
UV _{VCC2} - V _{CC2} UVLO threshold voltage		Fall	3.8	4	4.25	V			
V _{HYS(UVCC2)} V _{CC2} UVLO hysteresis voltage		Hysteresis voltage		0.2					
Driver		-							
	CANH	$V_1 = 0 \text{ V}, R_L = 60 \Omega$; see Figure 8-1, Figure 8-2	2.75		4.5	.,			
V _{O(D)} Bus output voltage (dominant)	CANL	and Figure 8-3.	0.5		2.25 V				
		$V_1 = 2 \text{ V}, R_L = 60 \Omega$; see Figure 8-1, Figure 8-2							
V _{O(R)} Bus output voltage (recessive)		and Figure 8-3.	2		3	V			
		$V_1 = 0 \text{ V}, R_L = 60 \Omega$; see Figure 8-1, Figure 8-2				.,			
		and Figure 8-3.	1.5		3	V			
V _{OD(D)} Differential output voltage (dom	inant)	$V_1 = 0 \text{ V}, R_L = 45 \Omega$; see Figure 8-1, Figure 8-2	4.4		3	V			
		and Figure 8-3.	1.4						
		$V_1 = 3 \text{ V}$, $R_L = 60 \Omega$; see Figure 8-1 and Figure 8-	420	1	42				
$V_{\text{OD(R)}}$ Differential output voltage (recessive)		2.	-120		12	mV			
		V _I = 3 V, no-load.	-50		50	mV			
V _{OC(D)} Common mode output voltage (dominant)	Can Figure 0.7	2	2.5	3	V			
V _{OC(pp)} Peak to peak common mode ou	tput	See Figure 8-7		0.3		V			
		V _{CANH} = -15V to 40V, CANL open; see <i>Figure 8</i> -	100						
		10.	-100						
I _{OS(SS)} Short-circuit steady-state output	current	V _{CANL} =15V to 40V, CANH open; see <i>Figure 8-10</i> .			100	mA			
		$V_{CANL} = V_{CANH} = -27V$ to 32V, see Figure 8-10.	- 5		5				
CMTI (Common Mode Transient Immui	nitv)	$V_1 = 0 \text{ V or } V_{CC1}$; see Figure 8-11.	85	100		kV/μs			
Receiver		if the conference of the confe				, μ			
V _{CM} Common mode input range			-30		30				
V _{IT+} Positive-going bus input threshol	d voltage				0.9	V			
V _{IT} . Negative-going bus input thresho		TXD = High, $-20V \le V_{CM} \le 20V$	0.5			V			
V _{IT+} Positive-going bus input threshol					1.0	V			
V _{IT} . Negative-going bus input thresho		- TXD = High, -30V ≤ V_{CM} ≤ 30V	0.4			V			
V _{HYS} Hysteresis voltage	ora romage			120		mV			
C _I CANH or CANL input capacitanc	e to ground	$V_{TXD} = 3V$, $V_1 = 0.4xsin(2\pi ft) + 2.5 V$, $f = 1MHz$		24		pF			
C _{ID} Differential input capacitance		$V_{TXD} = 3V, V_1 = 0.4x \sin(2\pi ft), f = 1MHz$		12		pF			
R _{IN} CANH and CANL input capacitar	ice	$V_{TXD} = 3V$	15		40	kΩ			
R _{ID} Differential input resistance		$V_{TXD} = 3V$	30		80	kΩ			
R _{I(m)} Input resistance matching		$(1 - [R_{IN(CANH)} / R_{IN(CANL)}]) \times 100\%, V_{CANH} = V_{CANL}$	-2%	0%	2%	1132			
migration in particular in accining		(+ Link(CANH) / TIN(CANL)] / A 100/0, VCANH - VCANL	2/0	070	2/0				

7.8 Switching Characteristics

Over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with $V_{CC1} = V_{CC2} = 5$ V.

	Parameters	Test conditions	MIN	TYP	MAX	Unit
Device	9					
t _{loop1}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	soo Figuro 9 9		130	210	ns
t _{loop2}	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	see Figure 8-8.		140	210	ns
Driver						
t _{PLH}	TXD propagation delay (recessive to dominant)			60		ns
t _{PHL}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive TXD propagation delay (recessive to dominant) TXD propagation delay (dominant to recessive) Differential driver output rise time Differential driver output fall time	soo Figure 8 4		45		
t _r	Differential driver output rise time	see Figure 8-4.		55	70	
t _f	Differential driver output fall time			60	70	
t _{TXD_DT}	0 ¹ TXD dominant timeout	C _L = 100 pF; see <i>Figure 8-9</i> .	2	5	8	ms
Receiv	ver	•				
t _{PLH}	RXD propagation delay (recessive to dominant)			100		
t _{PHL}	RXD Propagation delay (dominant to recessive)	and Figure 8 C	70			ns
t _r	RXD Output signal rise time	see Figure 8-6.		40		
t _f	RXD Output signal fall time			30		

Note

^{1.} The TXD dominant time out (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than (t_{TXD_DTO}) which releases the bus lines to recessive preventing a local failure from locking the bus dominant.

8 Parameter Measurement Information

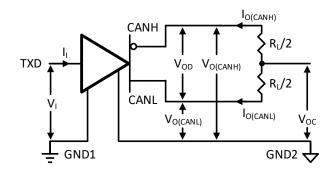


Figure. 8-1 Driver Voltage and Current Definition

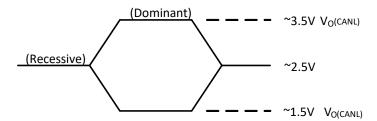


Figure. 8-2 Bus Logic State Voltage Definition

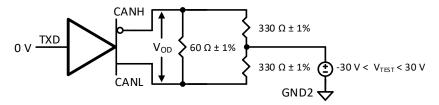
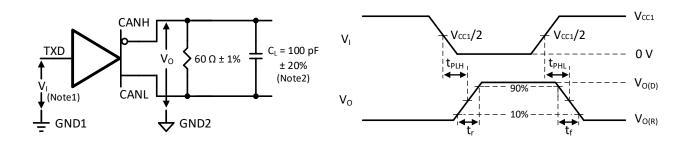



Figure. 8-3 Driver V_{OD} with Common Mode Loading Test Circuit

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq$ 6 ns, fall time $t_r \leq$ 6 ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-4 Transmitter Test Circuit and Timing Diagram

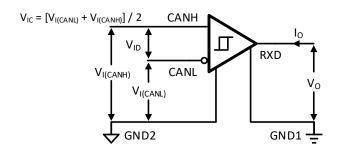
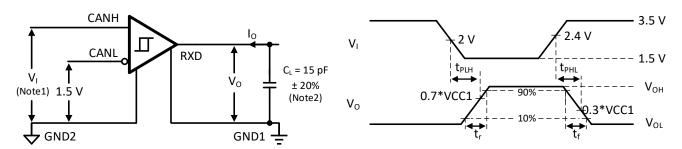



Figure. 8-5 Receiver Voltage and Current Definition

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time t_r \leq 6 ns, fall time t_r \leq 6 ns, t_0 \leq 7 ns, fall time t_t \leq 9 ns, fall time
- 2. Load capacitance C₁ includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-6 Receiver Test Circuit and Timing Diagram

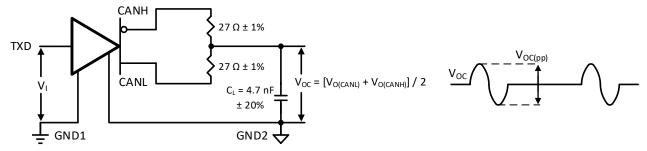


Figure. 8-7 Peak-to-Peak Output Voltage Test Circuit and Waveform

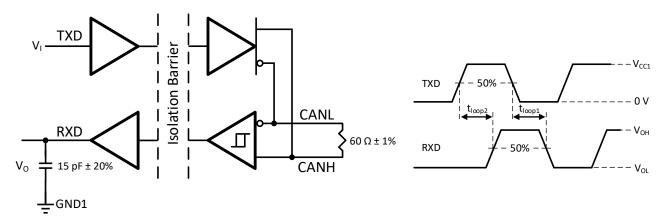
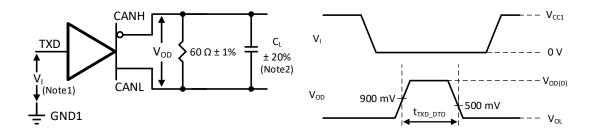



Figure. 8-8 TXD to RXD Loop Delay

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_r \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-9 Transmitting Dominant Timeout Timing Diagram

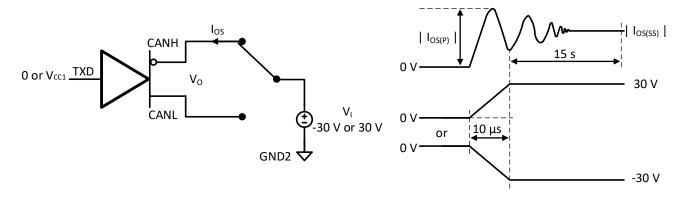


Figure. 8-10 Driver Short Circuit Current Test Circuit and Measurement

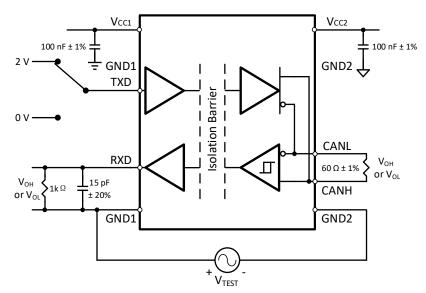


Figure. 8-11 Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The CA-IS1044S isolated controller area network (CAN) transceivers provide up to $3kV_{RMS}$ of galvanic isolation between the cable side (bus-side) of the transceiver and the controller side (logic-side). This device features up to $100 \text{ kV/}\mu\text{s}$ common mode transient immunity, allow up to 2Mbps communication across an isolation barrier. Robust isolation coupled with high standoff voltage and increased speeds enables efficient communication in noisy environments, making it ideal for communication with the microcontroller in a wide range of applications such as motor drives, PLC communication modules, EV charging infrastructures, automotive gateway etc. industrial and automotive applications. Interfacing with CAN protocol controllers is simplified by the 2.5V to 5.5V wide supply voltage range (V_{CC1}) on the controller side of the device. This supply voltage sets the interface logic levels between the transceiver and controller. The supply voltage range for the CAN bus side of the device is 4.5V to 5.5V (V_{CC2}). The receiver input common-mode range is $\pm 30\text{V}$, exceeding the ISO 11898 specification of -2V to +7V, and the fault tolerant is up to $\pm 58\text{V}$. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited, protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

9.2 CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH-CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 0.9V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero (lower than 0.5V). See *Figure 8-2*

9.3 Receiver

The receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH}-V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{DIFF} > 0.9V$, a logic-low is present on RXD; If $V_{DIFF} < 0.5V$, a logic-high is present. The CANH and CANL common-mode range is $\pm 30V$ in normal mode. RXD is a logic-high when CANH and CANL are shorted or terminated and un-driven. See *Table 9-1*.

 $\begin{array}{c|cccc} V_{ID}\text{=}V_{CANH}\text{-}V_{CANL} & BUS \ STATE & RXD \\ & V_{ID} \geq 0.9V & Dominant & Low \\ & 0.5V < V_{ID} < 0.9V & Indeterminate & Indeterminate \\ & V_{ID} \leq 0.5V & Recessive & High \\ & Open \ (V_{ID} \approx 0V) & Open & High \\ \end{array}$

Table 9-1 Receiver Truth Table

9.4 Transmitter

The transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the transmitter is provided in *Table 9-2*.

Table 9-2 Transmitter Truth Table (When Not Connected to the Bus)

V _{CC1}	V _{CC2}	INPUT	TXD LOW TIME	OUTF	BUS STATE	
V CC1	V CC2	TXD	TAD LOW THAT	CANH	CANL	BO3 STATE
		Low	< t _{TXD_DTO}	High	Low	Dominant
Power up	Power up	Low	> t _{TXD_DTO}	V _{CC2} /2	V _{CC2} /2	Recessive
		High or Open	Χ	V _{CC2} /2	V _{CC2} /2	Recessive
Power up	Power down	Х	Х	Hi-Z	Hi-Z	Hi-Z
Power down	Power up	X	X	V _{CC2} /2	V _{CC2} /2	Recessive

X = Don't care; Hi-Z = high-impedance.

CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

CHIPANALOG

9.5 **Protection Functions**

9.5.1 Signal Isolation and Protection

The CA-IS1044S devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains. The driver outputs/receiver inputs also feature ±58V fault protection, and both CANL and CANH are protected from ±7kV electrostatic discharge (ESD) to GND2 on the bus side, as specified by the Human Body Model (HBM).

9.5.2 Thermal Shutdown

If the junction temperature of the CA-IS1044S device exceeds the thermal shutdown threshold T_{J(shutdown)}, the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range of the device.

9.5.3 Current-Limit

The CA-IS1044S protects the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9.5.4 Transmitter-Dominant Timeout

The CA-IS1044S devices feature a transmitter-dominant timeout (t_{TXD_DTO}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{TXD_DTO} , the transmitter is disabled, releasing the bus to a recessive state. After a dominant timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. So the minimum transmitted data rate can be calculated as: 11 bits/ t_{TXD_DTO} = 11 bits / 2ms = 5.5kbps. The transmitter-dominant timeout limits the minimum possible data rate of the CA-IS1044S to 5.5kbps.

10 Application Information

The CAN bus has been a very popular serial communication standard in automotive and industry due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. The CA-IS1044S device is ideal for these kind of applications, see *Figure 10-1* the CA-IS1044S typical application circuit.

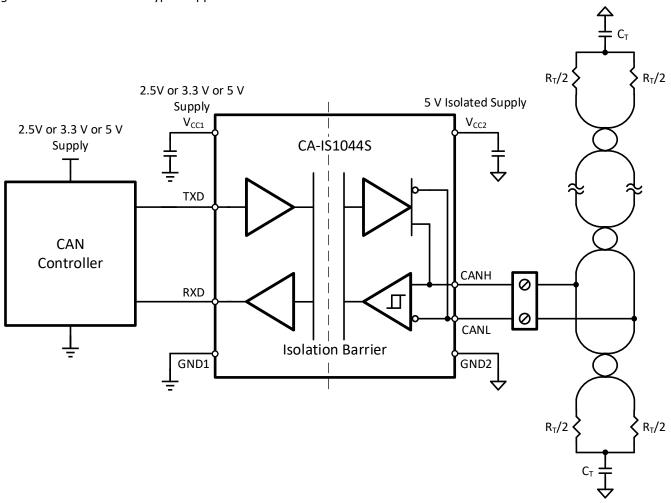


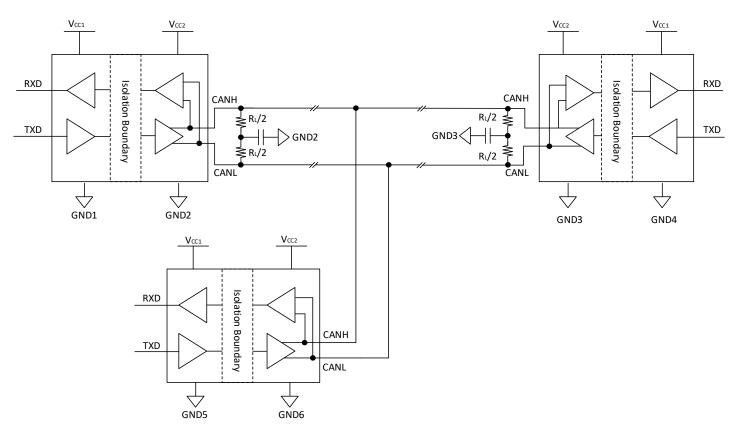
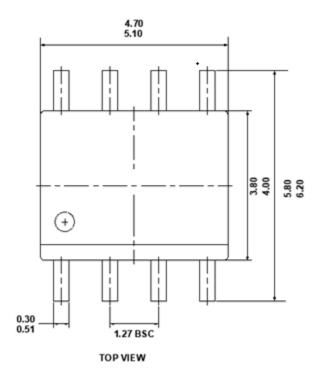
Figure. 10-1 Typical Application Circuit

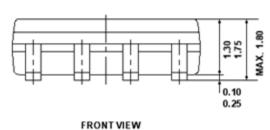
The CA-IS1044S device can operate up to 2Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes. However, with careful design, and consider of high input impedance of the CA-IS1044S, designers can have many more nodes on the CAN bus. The differential input resistance of the CA-IS1044S is a minimum of $30k\Omega$. If 110 CA-IS1044S transceivers are in parallel on a bus, this is equivalent to a 273Ω differential load. That transceiver load of 273Ω in parallel with the 60Ω (the two 120Ω termination resistors in parallel) gives a total 49Ω load on the bus. The driver differential output of CA-IS1044S is specified to provide at least 1.5V with a 60Ω load, and additionally specified with a differential output of 1.4V with a 45Ω load. Therefore, the CA-IS1044S theoretically can support over 110 transceivers on a single bus with design margin.

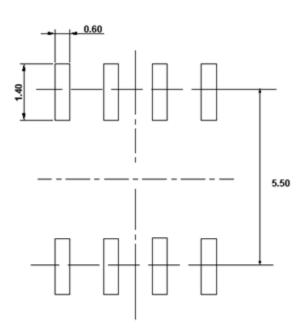
In multidrop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections can cause data errors by eroding the noise margin of the system. Although stubs are unavoidable in a multidrop system, care

should be taken to keep these stubs as short as possible, especially when operating with high data rates. See *Figure 10-2*, the typical CAN Bus Operating Circuit, termination may be a single 120Ω resistor at the end of the bus, either on the cable or in a terminating node; or split termination, the two 60Ω termination resistors in parallel may be used if filtering and stabilization of the common mode voltage of the bus is desired.

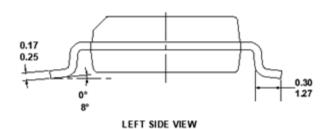
To ensure reliable operation at all data rates and supply voltages, a $0.1\mu F$ bypass capacitor is recommended at logic-side and bus-side power supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. The PCB designer should follow some critical recommendations in order to get the best performance from the design. For the high-speed operating digital circuit boards, we recommend to use the standard FR-4 PCB material and a minimum of four layers is required to accomplish a low EMI PCB design. Layer order from top-to-bottom is: high-speed signal layer, ground plane, power plane, and low-frequency signal layer. Also, keep the input/output traces as short as possible, avoid using vias to make low-inductance paths for the signals.


Figure. 10-2 Typical CAN Bus Operating Circuit


11 Package Information

Narrow-body SOIC8 Package Outline



PRONT VIEW

RECOMMENDED LAND PATTERN

Note:

1. All dimensions are in millimeters, angles are in degrees.

12 Soldering Temperature (reflow) Profile

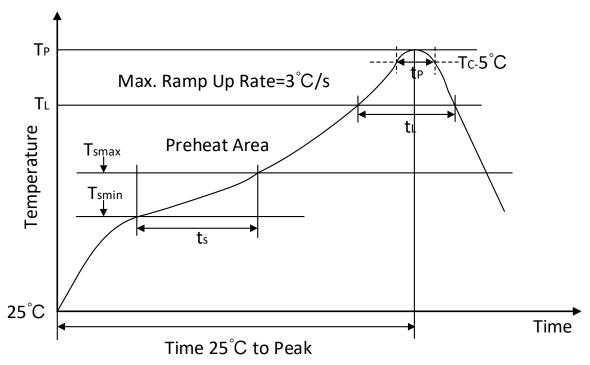
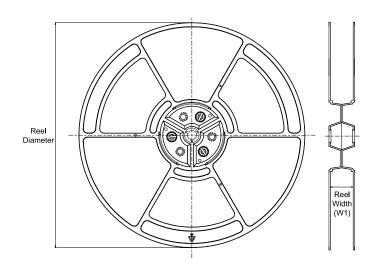
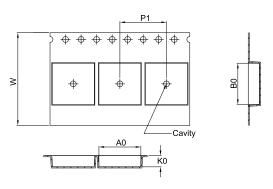


Figure. 12-1 Soldering Temperature (reflow) Profile

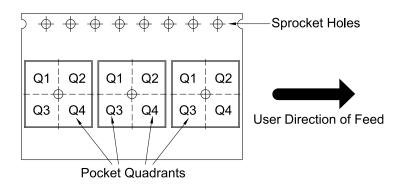

Table. 12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly					
Average ramp-up rate(217 °C to Peak)	3°C /second max					
Time of Preheat temp(from 150 °C to 200 °C	60-120 second					
Time to be maintained above 217 °C	60-150 second					
Peak temperature	260 +5/-0 °C					
Time within 5°C of actual peak temp	30 seconds					
Ramp-down rate	6 °C /second max.					
Time from 25°C to peak temp	8 minutes max					



13 Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width					
В0	Dimension designed to accommodate the component length					
K0	Dimension designed to accommodate the component thickness					
W	Overall width of the carrier tape					
P1	Pitch between successive cavity centers					

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS1044S	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1

14 Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com