

CA-IS2062 3.75kV_{RMS} Isolated CAN Transceivers

with Integrated DC-DC Converter

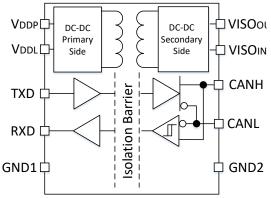
1 Features

- Meets the ISO 11898-2 physical layer standards
- Integrated DC-DC converter for cable-side power
- Integrated protection increases robustness
 - 3.75kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
 - ±150kV/μs typical CMTI
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Transmitter dominant timeout prevents lockup, data rates down to 5.5 kbps
 - Thermal shutdown
 - Wide operating temperature range: -40°C to 125°C
- Date rate is up to 1Mbps
- Operating from a single 5V supply on the logic side
- Low loop delay: 150ns (typical), 210ns (maximum)
- Ideal passive behavior when unpowered
- Wide-body SOIC16-WB(W) package
- Safety Regulatory Approvals
 - VDE certification according to DIN EN IEC60747-17(VDE 0884-17):2021-10
 - UL certification according to UL1577
 - CQC certification according to GB4843.1-2022
 - TUV certification according to EN61010-1:2010+A1

2 Applications

- Industrial Controls
- Building Automation
- Security and Protection System
- Transportation
- Medical
- Telecom

3 General Description


The CA-IS2062 is galvanically-isolated CAN transceivers with a built-in isolated DC-DC converter, that eliminates the need for a separate isolated power supply in space constrained isolated designs. It has the logic input and output buffers separated by a silicon oxide (SiO2) insulation barrier that provides up to $3.75 kV_{RMS}$ (60s) of galvanic isolation. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.

The CA-IS2062 operates from a single 5V supply on the logic side. An integrated DC-DC converter generates the 5V operating voltage for the cable-side. This device does not require any external components other than bypass capacitors to realize an isolated CAN port. The transceivers operate up to 1Mbps data rate and feature integrated protection for robust communication, including current limit, thermal shutdown, and the extended ±58V fault protection on the CAN bus for equipment where overvoltage protection is required. The dominant timeout detection prevents bus lockup caused by controller error or by a fault on the TXD input. These CAN receivers also incorporate an input common-mode range (CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V.

The CA-IS2062 is available in wide-body 16 pin SOIC(W) package, operates over -40°C to +125°C temperature range.

Device information				
Part Number	Package	Package size (nominal value)		
CA-IS2062W CA-IS2062VW	SOIC16-WB(W)	10.30 mm × 7.50 mm		

Simplified functional block diagram

CHIPANALOG

CA-IS2062W, CA-IS2062VW Version 1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

4 **Ordering Information**

	Table 4-1 Ordering Information							
Part #	V _{cc} (V)	Data Rate (Mbps)	Galvanic Isolation (V _{RMS})	V _{CCL}	Package			
CA-IS2062W	4.5~5.5	1	3750	No	SOIC16-WB(W)			
CA-IS2062VW	4.5~5.5	1	3750	Yes	SOIC16-WB(W)			

. **h** l a

Contents

1	Fea	tures1				
2	Applications1					
3	Ger	eral Description1				
4	Ord	ering Information2				
5	Rev	ision History3				
6	Pin	Configuration and Functions4				
7	Spe	cifications5				
	7.1	Absolute Maximum Ratings ¹ 5				
	7.2	ESD Ratings5				
	7.3	Recommended Operating Conditions5				
	7.4	Thermal Information5				
	7.5	Insulation Specifications6				
	7.6	Safety-Related Certifications7				
	7.7	Electrical Characteristics8				
	7.8	Switching Characteristics9				
8	Para	ameter Measurement Information10				

9	De	tailed D	escription	13
	9.1	Ove	rview	13
	9.2	CAN	I Bus Status	13
	9.3	Rec	eiver	13
	9.4	Trar	smitter	13
	9.5	Pro	tection Functions	14
		9.5.1	Signal Isolation	14
		9.5.2	Thermal Shutdown	14
		9.5.3	Current-Limit	14
		9.5.4	Transmitter-Dominant Timeout	14
10		Appli	cation Information	15
11		Packa	ge Information	18
12		Solde	ring Temperature (reflow) Profile	19
13		Tape a	and Reel Information	20
14		Impo	tant Statement	21

5 Revision History

Revision Number	evision Number Description		Page Changed
Version 1.00	NA	2022/07/12	NA
Version 1.01	Version 1.01 Updated POD and UL certification information		7
Version 1.02	Updated typical application circuit and PCB layout information	2023/05/20	19,20
Version 1.03	Update VDE, UL, TUV information	2023/10/23	6, 7
Version 1.04	Update CA-IS2062VW VCCL supply voltage range	2024/02/27	5
Version 1.05	Update VDE, UL, CQC, TUV information Update the test conditions of V _{IOSM}	2024/04/16	1, 6, 7

CHIPANALOG

Shanghai Chipanalog Microelectronics Co., Ltd.

6 Pin Configuration and Functions

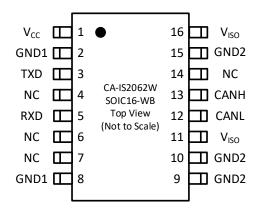


Figure 6-1 Pin Configuration

Table 6-1 CA-IS2062 Pin Configuration and Description

Pin name	Pin number Type SOIC16		Description
V _{CC}	1	Power supply	Power supply input for the logic side. Bypass V _{CC} to GND1 with 0.1μ F//10 μ F capacitor as close to the device as possible.
GND1	2, 8	Ground	Logic side ground.
TXD	3	Digital I/O	Transmitter data input. CANH and CANL are in the dominant state when TXD is low. CANH and CANL are in the recessive state when TXD is high.
NC	4, 6, 7, 14	-	No connection, do not connect these pins and leave them open.
RXD	5	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is low when the bus is in the dominant state.
GND2	9, 10, 15	Ground	Bus side ground.
CANL	12	Differential I/O	Low-level CAN differential line.
CANH	13	Differential I/O	High-level CAN differential line.
V _{ISO}	11	Power supply input Pin	The power input pin for internal CAN, place a 1µF ceramic and keep the distance within 2mm.Connect this Pin to Pin16.
V _{ISO}	16	Power supply output Pin	Isolated power supply output, provide power for the cable-side. Bypass $V_{\rm ISO}$ to GND2 with $0.1\mu F//10\mu F$ capacitors as close to the device as possible.

	Parameters	Minimum value	Maximum value	Unit
V _{CC} or V _{ISO}	Power supply voltage ²	-0.5	6.0	V
TXD or RXD to GND1	Logic side voltage (RXD, TXD)	-0.5	V _{CC} + 0.5 ³	V
CANH or CANL to GND2	Bus side voltage (CANH and CANL)	-40	40	V
lo	Receiver output current	-15	15	mA
Tj	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.

- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6 V.

7.2 ESD Ratings

			Numerical value	Unit
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±5000	V
V _{ESD}	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±2000	v
Note	es:			
1.	1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.			
2.	Per JEDEC document JEP1	57, 250V CDM allows safe manufacturing of standard ESD control process.		

7.3 Recommended Operating Conditions

	Para	MIN	ТҮР	MAX	Unit	
V _{CC}	Logic side power voltage	4.5	5	5.5	V	
V _{CCL}	Logic side logic power voltage		2.375	5	5.5	V
$V_{\text{I}} \text{or} V_{\text{IC}}$	Voltage at bus pins (separately	or common mode)	-12		12	V
V _{IH}	Input high voltage	Driver (TXD)	2		V _{CC} + 0.3	V
V _{IL}	Input low voltage	Driver (TXD)	-0.3		0.8	V
1	High-level output current	Driver	-70			
I _{OH}		Receiver	-2			mA
i	Low-level output current	Driver			70	mA
I _{OL}		Receiver			2.5	
T _A	Ambient temperature		-40	25	125	°C
Tj	Junction temperature		-40		150	°C
P _D	Total power dissipation	V_{CC} = 5.5V, T_A = 125°C, R_L = 60 Ω , TXD input is 500 kHz, 50% duty cycle square wave			900	mW
T _{J(shutdown)} Thermal shutdown temperature ¹				165		°C
Note:	nded operation in thermal shutdo	wn may affect device reliability.				

7.4 Thermal Information

	Heat meter	SOIC16-WB	Unit
R _{θJA}	Junction-to-ambient thermal resistance	86.5	°C/W

CA-IS2062W, CA-IS2062VW

Version 1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

7.5 Insulation Specifications

	Parameters	Test conditions	Value	Un
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mr
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package	8	m
CFG		surface	0	111
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μ
СТІ	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	
	Material group	Per IEC 60664-1	I	
		Rated mains voltage \leq 150 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage $\leq 300 V_{RMS}$	I-IV	
		Rated mains voltage $\leq 600 V_{RMS}$	I-IV	
		Rated mains voltage ≤ 1000 V _{RMS}	1-111	
DIN V V	/DE V 0884-17:2021-10 ²	· ·		
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	V
		AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	V
Viowm	Maximum operating isolation voltage	DC voltage	1414	V
		V _{TEST} = V _{IOTM} ,		
V _{IOTM}	Maximum transient isolation voltage	t=60 s (certified);	5200	VP
		$V_{\text{TEST}} = 1.2 \times V_{\text{IOTM}}$	5300)
		t=1 s (100% product test)		
	Maximum surge isolation voltage ³	Test method in accordance with IEC 62368-1, 1.2/50 μs		
Viosm		waveform,	5000	VP
		$V_{TEST} = 1.3 \times V_{IOSM}$ (certified)		
		Method a, after input/output safety test of the subgroup 2/3,		
		V _{ini} = V _{IOTM} , t _{ini} = 60 s;	≤5	
		$V_{pd(m)}$ = 1.2 × V_{IORM} , t_m = 10 s		
		Method a, after environmental test of the subgroup 1,		
q _{pd}	Apparent charge	V _{ini} = V _{IOTM} , t _{ini} = 60 s;	≤5	
Чра	Apparent enarge	$V_{pd(m)} = 1.3 \times V_{IORM}, t_m = 10 s$		'
		Method b, at routine test (100% production test) and		
		preconditioning (type test)	≤5	
		$V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s;		
		$V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1 s$		
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times sin (2\pi ft), f = 1 MHz$	~3.5	I
		V _{IO} = 500 V, T _A = 25°C	>1012	
R _{IO}	Isolation resistance	$V_{IO} = 500 \text{ V}, \ 100^{\circ}\text{C} \le \text{T}_{A} \le 125^{\circ}\text{C}$	>1011	
		$V_{10} = 500 \text{ V at } T_{S} = 150^{\circ}\text{C}$	>10 ⁹	
	Contaminant level		2	
UL ²				
V _{ISO}	Maximum withstanding isolation voltage	$V_{\text{TEST}} = V_{\text{ISO}}$, t = 60 s (qualification)	3750	v
• 150	mannan wenstanding isolation voltage	$V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3730	~

1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

2. Devices are immersed in oil during surge characterization.

3. The characterization charge is discharging charge (pd) caused by partial discharge.

4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

7.6 Safety-Related Certifications

Version	1.05

VDE	UL	CQC	TUV
Certified according to DIN EN	Certified according to UL 1577	Certified according to	Certified according to EN61010-
IEC60747-17(VDE 0884-	Component Recognition	GB4943.1-2011	1:2010+A1
17):2021-10; EN IEC60747-	Program		
17:2020+AC:2021			
Maximum transient isolation	Maximum isolation voltage:	reinforced isolation	Isolation rating: 2500V _{RMS}
voltage: 5300V _{pk}	3750 V _{RMS}	(Altitude≤5000m)	
Maximum repetitive peak isolation			
voltage: 1414V _{pk}			
Maximum surge isolation			
voltage: 5000V _{pk}			
Certificate number:	Certification number:	Certification number:	Certification number:
400572878 (reinforced	E511334	CQC23001406424	AK505918190001
isolation)			

CA-IS2062W, CA-IS2062VW

Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.05

7.7 Electrical Characteristics

over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V.

Parameters		Test conditions	MIN	ТҮР	MAX	Unit
Power supply current						
I _{cc} Logic side power supply current		$V_I = 0 V$, $R_L = 60 \Omega$ dominant timeout protection		90	120	mA
		V _I = V _{CC}		10	20	
Isolated Power Supply						
V _{ISO} Output voltage	No-load	I _{ISO} = 0mA	4.65	5.05	5.47	V
Driver						
V _{O(D)} Bus output voltage (dominant)	CANH	$V_1 = 0 V$, $R_L = 60 \Omega$; see <i>Figure 8-1</i> and	2.9	3.4	4.5	v
	CANL	Figure 8-2.	0.5		2	v
$V_{O(R)}\;\;$ Bus output voltage (recessive)		$V_1 = 2 V$, $R_L = 60 \Omega$; see <i>Figure 8-1</i> and <i>Figure 8-2</i> .	2	2.5	3	V
		$V_1 = 0$ V, $R_L = 60$ Ω; see Figure 8-1, Figure 8-2 and Figure 8-3.	1.5		3	v
$V_{OD(D)}$ Differential output voltage (dom	inant)	$V_1 = 0 V, R_L = 45 \Omega$; see Figure 8-1, Figure 8-2 and Figure 8-3.	1.3		3	v
V _{OD(R)} Differential output voltage (recessive)		$V_1 = 3 V, R_L = 60 \Omega$; see <i>Figure 8-1</i> and <i>Figure 8-2</i> .	-80		80	mV
		V _l = 3 V, no-load.	-0.05		0.05	v
V _{OC(D)} Common mode output voltage (dominant)			2	2.5	3	V
V _{OC(pp)} Peak to peak common mode output voltage		See Figure 8-7		60		mV
I _{IH} High-level input current, TXD input		V ₁ = 2 V			20	μA
IIL Low-level input current, TXD input		V ₁ = 0.8 V	-20			μA
1		V _{CANH} = -30 V, CANL open; see Figure 8-10.	-105	-36		
	_	V _{CANH} = 30 V, CANL open; see Figure 8-10.		0.6	2	- mA
I _{OS(SS)} Short-circuit steady-state output	current	$V_{CANL} = -30$ V, CANH open; see Figure 8-10.	-2	-0.6		
		V _{CANL} = 30 V, CANH open; see Figure 8-10.		42	105	
CMTI (Common Mode Transient Immur	nity)	$V_1 = 0$ V or V_{CC} ; see <i>Figure 8-11</i> .	100	150		kV/μs
Receiver						
V _{IT+} Positive-going bus input threshol	d voltage			0.8	0.9	V
VIT- Negative-going bus input thresho	old voltage		0.5	0.65		V
V _{HYS} Hysteresis voltage			50	125		mV
		I _{OH} = –4 mA; see <i>Figure 8-6</i> .	V _{cc} – 0.8	4.8		
V _{OH} High-level output voltage		I _{OH} = -20 μA; see <i>Figure 8-6</i> .	$V_{CC} - 0.1$	5		V
		I _{OL} = 4 mA; see <i>Figure 8-6</i> .		0.2	0.4	
V _{OL} High-level output voltage		I _{OL} = 20 μA; see <i>Figure 8-6</i> .		0	0.1	V
C _I CANH or CANL input capacitance	to ground	V _{TXD} = 3V, V _I = 0.4xsin(2πft)+2.5 V, f = 1MHz		24		рF
C _{ID} Differential input capacitance		$V_{TXD} = 3V, V_1 = 0.4xsin(2\pi ft), f = 1MHz$		12		рF
R _{IN} CANH and CANL input capacitance	e	V _{TXD} = 3V	15		40	kΩ
R _{ID} Differential input resistance		V _{TXD} = 3V	30		80	kΩ
R _{I(m)} Input resistance matching (1 – [R _{IN(CANH)} / R _{IN(CANL)}]) x 100%		V _{CANH} = V _{CANL}	-2%	0%	2%	
CMTI Common mode transient immun		$V_1 = 0 V \text{ or } V_{CC}$; see <i>Figure 8-11</i> .	100	150		kV/μs
	•	J				

Version 1.05

7.8 Switching Characteristics

over recommended operating conditions (unless otherwise noted). All typical values are at 25° C with V_{CC} = 5 V.

	Parameters	Test conditions	MIN	ТҮР	MAX	Unit
Device						
t _{loop1}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	see Figure 8-8.	110	150	210	ns
t _{loop2}	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	see rigure o-o.	110	150	210	ns
Driver						
t _{PLH}	TXD propagation delay (recessive to dominant)		35	75	130	
t _{PHL}	TXD propagation delay (dominant to recessive)		35	55	100]
t _r	Differential driver output rise time	see Figure 8-4.		55	100	ns
t _f	Differential driver output fall time			60	105	1
t _{TXD_DTC}	¹ TXD dominant timeout	C _L = 100 pF; see <i>Figure 8-9</i> .	2	5	8	ms
Receiv	er					
t _{PLH}	RXD propagation delay (recessive to dominant)			85	140	
t_{PHL}	RXD Propagation delay (dominant to recessive)			60	140	1
tr	RXD Output signal rise time	see Figure 8-6.		2.5	6	ns
t _f	RXD Output signal fall time			2.5	6	1

1. The TXD dominant time out (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than (t_{TXD_DTO}) which releases the bus lines to recessive preventing a local failure from locking the bus dominant.

CA-IS2062W, CA-IS2062VW Version 1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

8 Parameter Measurement Information

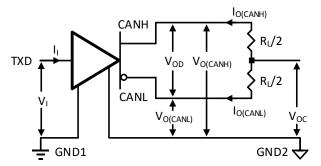


Figure. 8-1 Driver Voltage and Current Definition

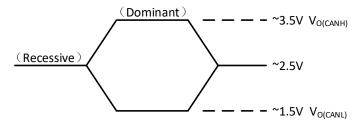


Figure. 8-2 Bus Logic State Voltage Definition

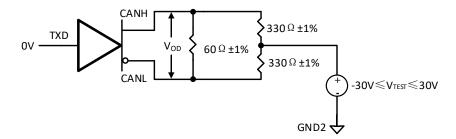
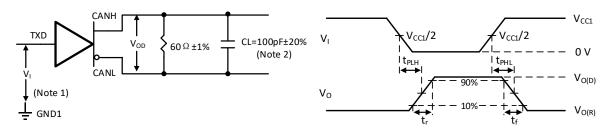



Figure. 8-3 Driver V_OD with Common Mode Loading Test Circuit

Notes:

2.

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time tr/ \leq 6 ns, fall time tr/ \leq 6 ns; Z₀ = 50 Ω .
 - Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-4 Transmitter Test Circuit and Timing Diagram

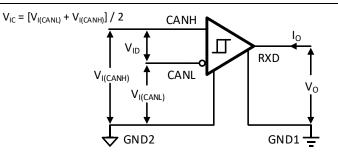
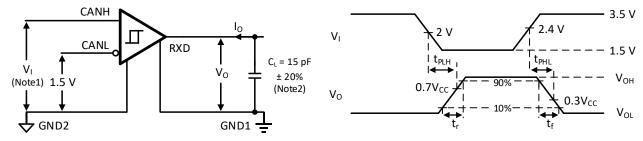



Figure. 8-5 Receiver Voltage and Current Definition

Notes:

1. The input pulse is supplied by a generator with characteristics: PRR \le 125 kHz, 50% duty cycle; rise time t_r \le 6 ns, fall time t_r \le 6 ns; Z₀ = 50 Ω .

2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-6 Receiver Test Circuit and Timing Diagram

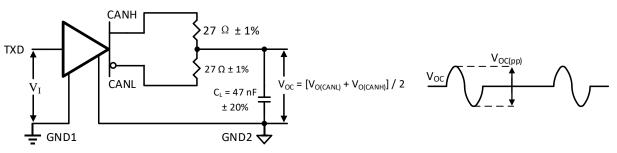


Figure. 8-7 Peak-to-Peak Output Voltage Test Circuit and Waveform

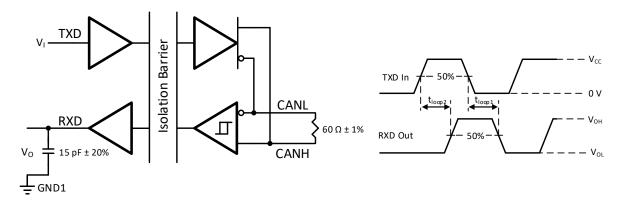
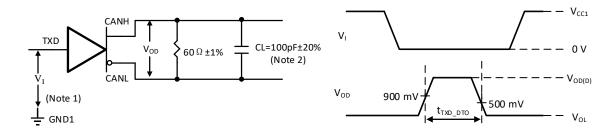
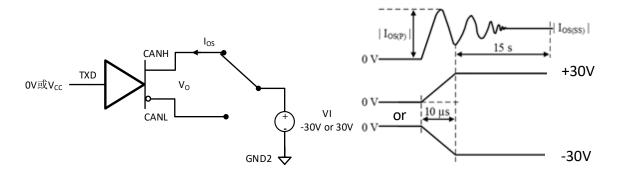
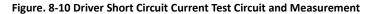



Figure. 8-8 TXD to RXD Loop Delay




Notes:

1. The input pulse is supplied by a generator with characteristics: $PRR \le 125$ kHz, 50% duty cycle; rise time $t_r \le 6$ ns, fall time $t_r \le 6$ ns; $Z_0 = 50 \Omega$.

2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure. 8-9 Transmitting Dominant Timeout Timing Diagram

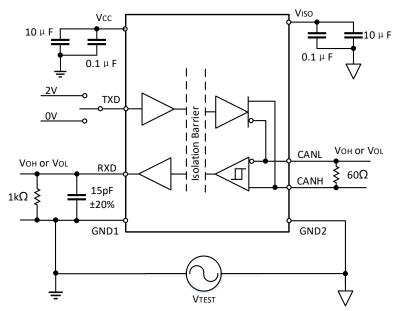


Figure. 8-11 Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The CA-IS2062 isolated CAN transceiver provides up to 3750V_{RMS} (60s) of galvanic isolation between the CAN cable-side of the transceiver and the logic-side. This integrated transceiver is suitable for applications that have limited board space and require more integration. Only external bypass capacitors are needed to fully realize an isolated CAN port. The device features up to 150 kV/µs common mode transient immunity, allow up to 1Mbps communication across an isolation barrier. Robust isolation coupled with high standoff voltage and increased speeds enables efficient communication in noisy environments, making it ideal for communication with the microcontroller in a wide range of applications such as industrial control, building automation, telecom rectifiers, HVACs etc. industrial applications. The supply voltage range for the logic side is 4.5V to 5.5V (V_{CC}); Power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side. The receiver input common-mode range is ±30V, exceeding the ISO 11898 specification of -2V to +7V, and the fault tolerant is up to ±58V. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited, protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

9.2 CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH-CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 0.9V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero(lower than 0.5V), see *Figure 8-2*.

9.3 Receiver

The receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH}-V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{DIFF} > 0.9V$, a logic-low is present on RXD; If $V_{DIFF} < 0.5V$, a logic-high is present. The CANH and CANL common-mode range is ±30V in normal mode. RXD is a logic-high when CANH and CANL are shorted or terminated and un-driven. See *Table 9-1*.

$V_{ID} = V_{CANH} - V_{CANL}$	BUS STATE	RXD							
V _{ID} ≥0.9V	Dominant	Low							
0.5V < V _{ID} <0.9V	Indeterminate	Indeterminate							
V _{ID} ≤ 0.5V	Recessive	High							
Open (V _{ID} ≈ 0V)	Open	High							

Table 9-1 Receiver Truth Table	Table	9-1	Receiver	Truth	Table
--------------------------------	-------	-----	----------	-------	-------

9.4 Transmitter

The transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the transmitter is provided in *Table 9-2*. CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

	INPUT		OUTF						
V _{cc}	TXD	TXD LOW TIME	CANH	CANL	BUS STATE				
	Low	< t _{TXD_DTO}	High	Low	Dominant				
Power Up	Low	> t _{TXD_DTO}	V _{ISO} /2	V _{ISO} /2	Recessive				
	High or Open	Х	V _{ISO} /2	V _{ISO} /2	Recessive				
Power Down	Х	Х	Hi-Z	Hi-Z	Hi-Z				

Table 9-2 Transmitter Truth Table (When Not Connected to the Bus)

X = Don't care, Hi-Z = high-impedance.

CA-IS2062W, CA-IS2062VW

Version 1.05

9.5 Protection Functions

9.5.1 Signal Isolation

The CA-IS2062 devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains. Also, the power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side.

9.5.2 Thermal Shutdown

If the junction temperature of the CA-IS2062 device exceeds the thermal shutdown threshold $T_{J(shutdown)}$ (165°C, typ.), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range of the device.

9.5.3 Current-Limit

The CA-IS2062 protect the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9.5.4 Transmitter-Dominant Timeout

The CA-IS2062 devices feature a transmitter-dominant timeout (t_{TXD_DTO}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{TXD_DTO} , the transmitter is disabled, releasing the bus to a recessive state. After a dominant timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. So the minimum transmitted data rate can be calculated as: 11 bits/ t_{TXD_DTO} = 11 bits / 2ms = 5.5kbps. The transmitter-dominant timeout limits the minimum possible data rate of the CA-IS2062 to 5.5kbps.

10 Application Information

CAN interface has been a very popular serial communication standard in the industry and automotive applications due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. The CA-IS2062x provide complete isolated solution for these kind of applications, see Figure10-1, the typical application circuit.

The CA-IS2062x devices can operate up to 1Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes. However, with careful design, and consider of high input impedance of the CA-IS2062x, designers can have many more nodes (up to 110) on the CAN bus.

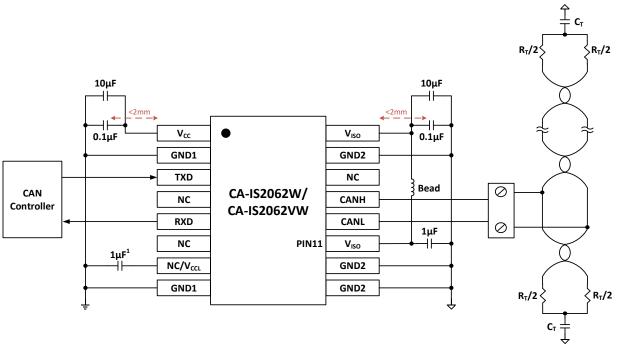


Figure 10- 1 Typical Application Circuit

In multi-drop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections can cause data errors by eroding the noise margin of the system. Although stubs are unavoidable in a multi-drop system, care should be taken to keep these stubs as short as possible, especially when operating with high data rates. See Figure10-2, the typical CAN bus operating circuit, termination may be a single 120Ω resistor (R_T) at the end of the bus, either on the cable or in a terminating node; or split termination, the two 60Ω termination resistors in parallel may be used if filtering and stabilization of the common mode voltage of the bus is desired.

CA-IS2062W, CA-IS2062VW

Version 1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

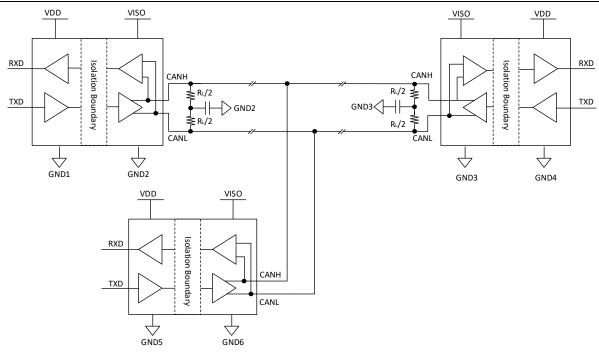
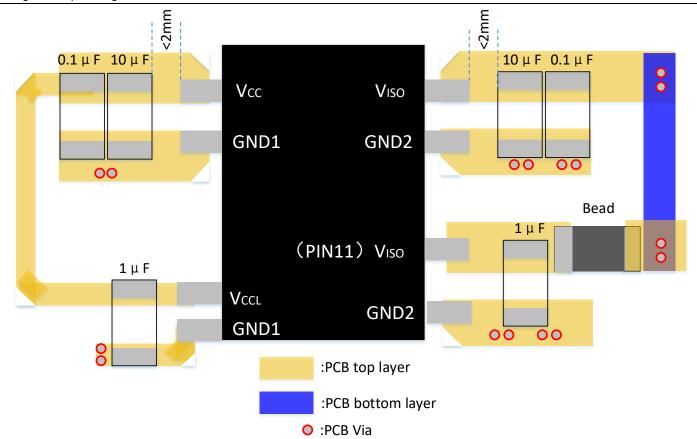


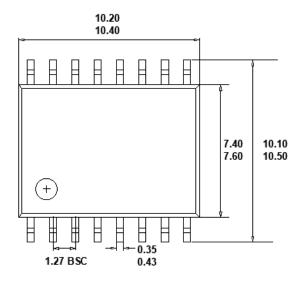
Figure 10- 2 Typical CAN Bus Operating Circuit

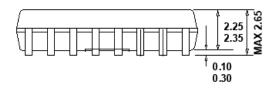
To ensure reliable operation at all data rates, it is strongly recommended to bypass V_{CC} and V_{ISO} with 0.1μ F||10 μ F low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input/output pins as possible. The PCB designer should follow some critical recommendations in order to get the best performance from the design. For the high-speed operating digital circuit boards, we recommend to use the standard FR-4 PCB material and a minimum of four layers is required to accomplish a low EMI PCB design. Also, keep the input/output traces as short as possible, avoid using vias to make low-inductance paths for the signals. For harsh industrial environments, external protection might be necessary to protect the CAN transceiver during normal operation. If the 10 μ F ceramic close to V_{CC} and V_{ISO} pins and keep distance within 2mm. The input/output ceramic capacitor and the IC must be placed on the same PCB layer and connected without any vias to reduce parasite. The recommended PCB layout of CA-IS2062VW is shown in Figure10-3. For the logic supply input, we recommend to use a 1 μ F ceramic capacitors with X5R or X7R between V_{CCL} pin and GND1. V_{ISO}(PIN11) is power pin for CAN module inside, place a 1 μ F ceramic capacitors as close as possible to this pin.

CA-IS2062W, CA-IS2062VW Version 1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

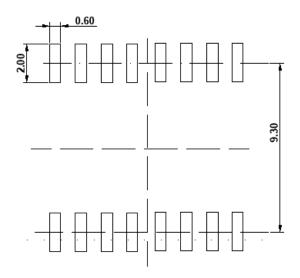


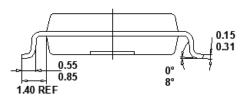

Figure 10- 3 Recommended PCB layout of isolated power


CA-IS2062W, CA-IS2062VW Version 1.05

11 Package Information

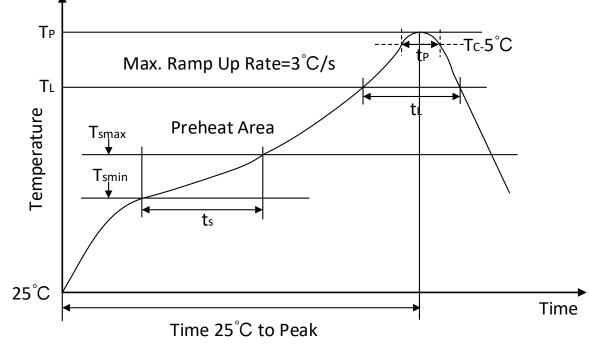
Wide-body SOIC16 Package Outline


TOP VIEW


FRONT VIEW

Note:

1. All dimensions are in millimeters, angles are in degrees.


RECOMMMENDED LAND PATTERN

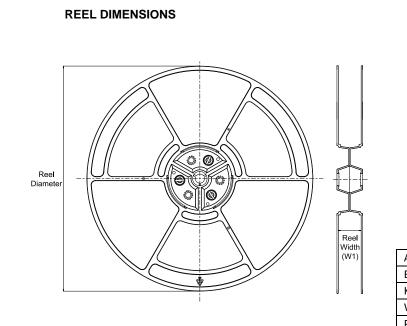
LEFT SIDE VIEW

12 Soldering Temperature (reflow) Profile

Figure. 12-1 Soldering	Temperature	(reflow)	Profile
		·····	

Tab.12-1 Soldering	Temperature Parameter
--------------------	-----------------------

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 $^{\circ}C$ to Peak)	3°C /second max
Time of Preheat temp(from 150 °C to 200 °C	60-120 second
Time to be maintained above 217 °C	60-150 second
Peak temperature	260 +5/-0 ℃
Time within 5°C of actual peak temp	30 second
Ramp-down rate	6 °C /second max.
Time from 25°C to peak temp	8 minutes max

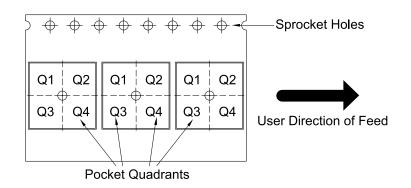

CHIPANALUG
Shanghai Chipanalog Microelectronics Co., Ltd.

13 Tape and Reel Information

20

Version 1.05

CA-IS2062W, CA-IS2062VW



\oplus $\oplus \oplus$ -. ≥ 0 ¢ -Cavity K0

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
К0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	КО (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS2062W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS2062VW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14 Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.[®] and Chipanalog[®] are registered trademarks of Chipanalog.

http://www.chipanalog.com