

CA-IS308x 5kV_{RMS} Isolated Half/Full-Duplex RS-485/RS-422 Transceivers

1. **Features**

High-Performance and Compliant with RS-485 EIA/TIA-485 Standard

- 500kbps, 10Mbps or 20Mbps data rate optional
- 1/8 unit load enables up to 256 nodes on the bus
- 2.375V to 5.5V logic side supply voltage and 3 V to 5.5 V bus side supply voltage
- Bus common mode supply rage
- CA-IS3080/86: -15V to +15V
- CA-IS3082/88: -7V to +12V
- CMTI: ±150kV/µs (typical)
- Output current limited and thermal shutdown protection on driver side
- Open, short circuit protection and bus failure protection
- Wide operating temperature range: -40°C to 125°C
- Wide-body SOIC16-WB(W) Package
- High lifetime: >40 years

Safety Regulatory Approvals

- VDE certification according to DIN EN IEC60747-17(VDE 0884-17):2021-10
- UL certification according to UL1577
- CQC certification according to GB4843.1-2022
- TUV certification according to EN61010-1:2010+A1

Applications

- **Industrial Automation Equipment**
- Grid infrastructure
- Solar inverter
- Motor drivers
- **HVAC**

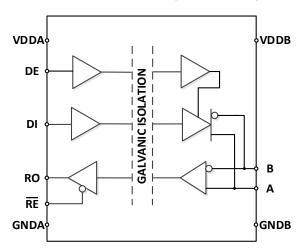
General Description

The CA-IS308x family of devices is a galvanically-isolated RS-485/RS-422 transceiver that has superior isolation and RS485 performance to meet the needs of the industrial applications. All devices of this family have the logic input and output buffers separated by a silicon oxide (SiO2) insulation barrier that provides galvanic isolation, features up to $5000V_{RMS}$ (60s) of galvanic isolation and $\pm 150kV/\mu s$ typical CMTI. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.

The CA-IS308x family of devices supports multiple nodes communications on bus line, and max data rate up to 20Mbps, allowing up to 256 transceivers (loads) on a common bus. Maintaining multidrop operation and increasing the maximum data rate offers a more robust system design for reliable communication. For the CA-IS308x family of devices, The CA-IS3080 and CA-IS3086 fullduplex transceivers are designed for bidirectional data communications on multipoint bus transmission lines simultaneously. The CA-IS3082 and CA-IS3088 provide halfduplex transceivers, the driver and receiver enable pins let any node at any given moment be configured in either transmit or receive mode which decreases cable requirements.

The CA-IS308x series devices are available in wide-body SOIC16 package which is the industry standard isolated RS-485/RS-422 package, and operate over -40°C to +125°C temperature range.

Device information


Part #	Package	Package size (NOM)
CA-IS3080		
CA-IS3082	SOIC16-WB(W)	10.30 mm × 7.50 mm
CA-IS3086	301C10-WB(W)	
CA-IS3088		

CA-IS3080/CA-IS3086 full-duplex block diagram

VDDA RO RE DE DE DI GNDA GNDB

CA-IS3082/CA-IS3088 half-duplex block diagram

4. Ordering Information

Table. 4-1 Ordering Information

Model	V _{DDA} (V)	V _{DDB} (V)	Full/half-duplex	Transmission speed (Mbps)	Rated voltage (V _{RMS})	Package
CA-IS3080WX	2.375~5.5	3.0~5.5	Full-duplex	0.5	5000	SOIC16-WB
CA-IS3086WX	2.375~5.5	3.0~5.5	Full-duplex	10	5000	SOIC16-WB
CA-IS3082WX	2.375~5.5	3.0~5.5	Half-duplex	0.5	5000	SOIC16-WB
CA-IS3082WNX	2.375~5.5	3.0~5.5	Half-duplex	0.5	5000	SOIC16-WB
CA-IS3088WX	2.375~5.5	3.0~5.5	Half-duplex	20	5000	SOIC16-WB

Contents

1.	Featu	ıres		1
2.	Appli	catio	ons	1
3.	Gene	ral D	escription	1
4.			Information	
5.		_	listory	
6.			guration and Description	
7.		_	ions	
	7.1.		solute Maximum Ratings ¹	
	7.2.		Ratings	
	7.3.	Rec	commended Operating Conditions	7
	7.4.	The	ermal Information	7
	7.5.	Insi	ulation Specifications	8
	7.6.	Saf	ety-Related Certifications	9
	7.7.	Ele	ctrical Characteristics	10
	7.	7.1.	Driver	10
	7.	7.2.	Receiver	11
	7.8.	Sup	pply Current	12
	7.9.	Swi	tching Characteristics	12
	7.9	9.1.	Driver	12

	7.9	.2.	Receiver	13
8.	Paran	nete	r Measurement Information	14
9.	Detail	led [Description	17
	9.1.	Log	ric Input	17
	9.2.	Red	ceiver	17
	9.3.	Dri	ver	18
	9.4.	Pro	tection Functions	19
	9.4	.1.	Signal Isolation	19
	9.4	.2.	Thermal Shutdown	19
	9.4	.3.	Current-Limit	19
10.	Appli	catio	ons Information	19
	10.1.	Тур	oical Application	19
	10.2.		transceivers on the bus	
	10.3.	PCE	3 Layout	21
11.	Packa	ge lı	nformation	22
12.	Solde	ring	Temperature (reflow) Profile	23
13.	Tape a	and	Reel Information	24
14.	Impoi	rtant	t statement	25

5. Revision History

Revision Number	Description	Revised Date	Page Changed
Version 1.00	N/A		N/A
Version 1.01	The driver output changed to high-impedance state under thermal shutdown.		11
Version 1.02	Updated VIORM value to 1414V, VIOWM value to 1000V, VIOTM value to 1414V.		8
	Updated CA-IS3082W/WX/WNX and CA-IS3088W/WX all parameters of EC table.		10,12
	Add new part number CA-IS3082WNX.		2,6,23
Version 1.03	Deleted CA-IS3080W、CA-IS3082W、CA-IS3086W and CA-IS3088W information,Add		2
	CA-IS3080WX and CA-IS3086WX Part number and information.		
	Add CA-IS3080/86WX VDDB operating range 3.0V~5.5V.		1
	Add CA-IS3080/86WX bus common mode operating voltage -15V to +15V.		1
Version 1.04	Updated CA-IS308x' EC table.		10~13
Version 1.05	Updated Maximum data rate up to 20Mbps of CA-IS3088WX.		1
Version 1.06	Updated POD.	2022/12/19	22
Version 1.07	Update enable time of CA-IS3088WX driver	2023/03/09	12
version 1.07	Update Propagation delay time of CA-IS3088WX receiver	2023/03/09	13
Version 1.08	Update VDE, UL, TUV information	2023/09/17	8,9
Version 1.09	Updated ESD information	2024/03/21	7
Version 1.10	Update VDE, UL, CQC, TUV information Update the test conditions of V _{IOSM}	202404/16	1,8,9

6. Pin Configuration and Description

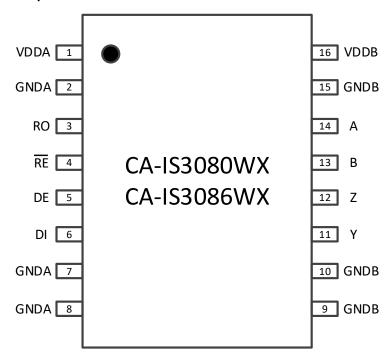


Figure. 6-1 CA-IS3080WX and CA-IS3086WX Top View

Tab. 6-1 CA-IS3080WX and CA-IS3086WX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both 0.1μF and 1μF capacitors as
VDDA	1	rower supply	close to the device as possible.
GNDA	2,7,8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
RO	3	Digital I/O	Receiver Data Output. Drive $\overline{\text{RE}}$ low to enable RX. With $\overline{\text{RE}}$ low, RO is high when (V _A –
NO.	3	Digital I/O	V_B) > -20mV and is low when $(V_A - V_B)$ < -200mV.
RE	4	Digital I/O	Receiver Output Enable. Driver RE low or connect to GNDA to enable RX. Drive RE high
KE	4	Digital I/O	to disable RX.
			Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or
DE	5	Digital I/O	connect to GNDA to disable bus driver outputs. DE has an internal weak pull-down to
			GNDA.
			Driver Input. With DE high, a logic low on DI forces the noninverting output (Y) low and
DI	6	Digital I/O	the inverting output (Z) high; a logic high on DI forces the noninverting output high and
			the inverting output low.
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus signals.
Υ	11	Bus I/O	Non-inverting RS-485/RS-422 driver output .
Z	12	Bus I/O	Inverting RS-485/RS-422 driver output.
В	13	Bus I/O	Inverting RS-485/RS-422 receiver input.
А	14	Bus I/O	Non-inverting RS-485/RS-422 receiver input.
VDDB	16	Dower supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1µF and 1µF capacitors as
VDDB	16	Power supply	close to the device as possible.

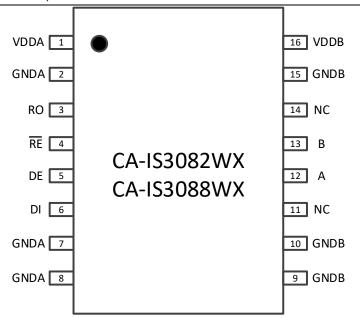


Figure. 6-2 CA-IS3082WX and CA-IS3088WX Top View

Tab. 6-2 CA-IS3082WX and CA-IS3088WX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both $0.1\mu F$ and $1\mu F$ capacitors as close to the device as possible.
GNDA	2, 7, 8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
RO	3	Digital I/O	Receiver Data Output. Drive \overline{RE} low to enable RX. With \overline{RE} low, RO is high when $(V_A - V_B) > -20$ mV and is low when $(V_A - V_B) < -20$ 0mV.
RE	4	Digital I/O	Receiver Output Enable. Driver \overline{RE} low or connect to GNDA to enable RX. Drive \overline{RE} high to disable RX.
DE	5	Digital I/O	Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or connect to GNDA to disable bus driver outputs. DE has an internal weak pull-down to GNDA.
DI	6	Digital I/O	Driver Input. With DE high, a logic low on DI forces the noninverting output (A) low and the inverting output (B) high; a logic high on DI forces the non-inverting output high and the inverting output low.
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus signals.
NC	11, 14	-	No internal connection
A	12	Bus I/O	Non-inverting RS-485/RS-422 receiver input and driver output.
В	13	Bus I/O	Inverting RS-485/RS-422 receiver input and driver output.
VDDB	16	Power supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1 μ F and 1 μ F capacitor as close to the device as possible.

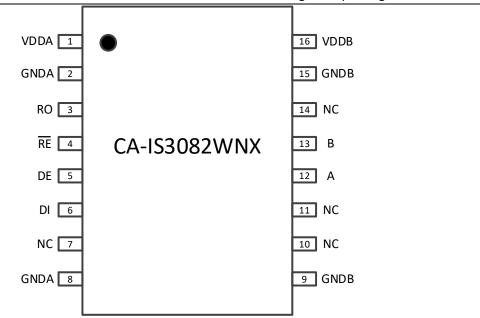


Figure. 6-3 CA-IS3082WNX Top View

Tab. 6-3 CA-IS3082WNX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both $0.1\mu F$ and $1\mu F$ capacitors as close to the device as possible.
GNDA	2, 7, 8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
RO	3	Digital I/O	Receiver Data Output. Drive \overline{RE} low to enable RX. With \overline{RE} low, RO is high when $(V_A - V_B) > -20$ mV and is low when $(V_A - V_B) < -20$ 0mV.
RE	4	Digital I/O	Receiver Output Enable. Driver \overline{RE} low or connect to GNDA to enable RX. Drive \overline{RE} high to disable RX.
DE	5	Digital I/O	Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or connect to GNDA to disable bus driver outputs. DE has an internal weak pull-down to GNDA.
DI	6	Digital I/O	Driver Input. With DE high, a logic low on DI forces the noninverting output (A) low and the inverting output (B) high; a logic high on DI forces the non-inverting output high and the inverting output low.
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus signals.
NC	7, 10, 11, 14	-	No internal connection
А	12	Bus I/O	Non-inverting RS-485/RS-422 receiver input and driver output.
В	13	Bus I/O	Inverting RS-485/RS-422 receiver input and driver output.
VDDB	16	Power supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1 μ F and 1 μ F capacitor as close to the device as possible.

7. Specifications

7.1. Absolute Maximum Ratings¹

	Parameters		Minimum value	Maximum value	Unit
V_{DDA} , V_{DDB}	Power supply voltage ²		-0.5	6.0	V
V	Logic voltage (A. D. V. 7)	CA-IS3080/86	-30	30	V
V_{1O}	Logic voltage (A, B, Y, Z) CA-IS30	CA-IS3082/88	-8	13	V
V _{IO}	Logic voltage (DI, DE, RE, RO)	·	-0.5	V _{DDA} +0.5 ³	V
Io	Output current on RO		-20	20	mA
T _J	T _J Junction temperature			150	°C
T _{STG}	Storage temperature range		-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not be exceeded 6V.

7.2. ESD Ratings

			Value	Unit
		Logic-Side Pins to GNDA	±6k	
V _{ESD}	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	Cable Side to GNDB	±6k	V
Electrostatic discharge		Bus pin to GNDB	±20k	V
discharge	Charged device model (CDM), per JEDEC Specification JESD22	±2k		

7.3. Recommended Operating Conditions

	Parameters		Minimum value	Typical value	Maximum value	Unit
V_{DDA}	Power supply voltage on side A		2.375	3.3 or 5V	5.5	V
V_{DDB}	Power supply voltage on side B	3	3.3 or 5V	5.5	V	
V _{oc}	Common mode voltage at bus pins: A, B, (CA-IS3	3082/88)	-7		12	V
V _{oc}	Common mode voltage at bus pins: A, B, Y and Z	Z (CA-IS3080/86)	-15		15	V
V	Differential input valtage V	CA-IS3080/86	-12		12	V
V_{ID}	Differential input voltage V _{AB}	CA-IS3082/88	-15		15	V
RL	Differential load resistance		54			Ω
V _{IH}	Input high voltage (DI, DE to GNDA)		2.0		V _{DDA} +0.3	V
V _{IL}	Input low voltage (DI, DE to GNDA)		-0.3		0.8	V
V _{IH}	Input high voltage (RE to GNDA)		0.7xV _{DDA}		V _{DDA} +0.3	V
V _{IL}	Input low voltage (RE to GNDA)		-0.3		0.3xV _{DDA}	V
		CA-IS3080WX				
		CA-IS3082WX			0.5	
DR	Data rate	CA-IS3082WNX				Mbps
		CA-IS3086WX			10	
		CA-IS3088WX			20	
T _A	Environmental temperature	•	-40		125	°C

7.4. Thermal Information

	Thermal Metric	CA-IS308x	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	83.4	°C/W

CHIPANALOG

7.5. Insulation Specifications

	Parameters	Test conditions	Specifications W	Unit
CLR	External Clearance ¹	Shortest terminal-to-terminal distance through air	8	mm
CPG	External Creepage ¹	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	IEC 60664-1 over-voltage category	Rated mains voltage ≤ 600 V _{RMS}	I-IV	
		Rated mains voltage ≤ 1000 V _{RMS}	1-111	
DIN V \	/DE V 0884-17:2021-10 ²			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	V_{PK}
		AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	V _{RMS}
V_{IOWM}	Maximum operating isolation voltage	DC voltage	1414	V _{DC}
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, t=60 s (qualification); $V_{TEST} = 1.2 \times V_{IOTM}$, t=1 s (100% product test)	7070	V_{PK}
V _{IOSM}	Maximum surge isolation voltage ²	Test method per IEC 62368-1, $1.2/50\mu$ s waveform, $V_{TEST} = 1.6 \times V_{IOSM}$ (qualification)	800 0	V_{PK}
		Method a, after input/output safety tests subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10s$	≤5	
q_{pd}	Apparent charge ³	Method a, after environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10s$	≤5	рC
		Method b1, at routine test (100% production test) and preconditioning (sample test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1s; \\ V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1s$	≤5	
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$	~0.5	pF
-	· · · · ·	V _{IO} = 500 V, T _A = 25°C	>1012	•
R_{IO}	Isolation resistance , input to output ⁴		>10 ¹¹	Ω
		V _{IO} = 500 V at T _S = 150°C	>109	
	Pollution degree		2	
UL 157	7	·		
V _{ISO}	Maximum isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (certified) $V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	5000	V_{RMS}

Notes:

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

7.6. Safety-Related Certifications

VDE	UL	cqc	TUV
Certified according to DIN EN IEC60747-17(VDE	Certified according to UL	Certified according to	Certified according to
0884-17):2021-10; EN IEC60747-	1577 Component	GB4943.1-2011	EN61010-1:2010+A1
17:2020+AC:2021	Recognition Program		
Maximum transient isolation voltage: 7070V _{pk}	Maximum isolation	reinforced isolation	Isolation rating:
Maximum repetitive peak isolation voltage:	voltage: 5000 V _{RMS}	(Altitude≤5000m)	5000Vrms
1414V _{pk}			
Maximum surge isolation voltage: 8000V _{pk}			
Certificate number:	Certification number:	Certification number:	Certification number:
40057278 (reinforced isolation)	E511334	CQC23001406424	AK505918190001

7.7. Electrical Characteristics

7.7.1. Driver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

CA-IS3082WX, CA-IS3088WX, CA-IS3082WNX:

	Parameters	Test conditions	Minimum value	ТҮР	Maximum value	Unit
V _{OD1}	Driver differential-output voltage	$V_{DDB} = 5V$	2.7	4.6	5.5	V
V _{OD2}	Driver differential-output voltage		1.5	3.6		
Δ V _{OD}	Change in differential output voltage between two states	- R _L = 54Ω, see Figure 8-1	-0.2		0.2	, ,
V _{OC}	Common-mode output voltage		1	V _{DDB} /2	3	V
ΔV _{OC}	change in steady-state common-mode output voltage between two states		-0.2		0.2	
I _{IH} ,I _{IL}	Input current(DI, DE)	V_{DI} , $V_{DE} = 0V$ or V_{DDA}	-20		20	μΑ
	Short circuit output current	DE = V_{DDA} , V_A or V_B = -7V	-150		150	mA
I _{OS}	Short-circuit output current	DE = V_{DDA} , V_A or $V_B = 12V$	-130		130	IIIA
CMTI	Common mode transient immunity	V _{CM} = 1500V; see Figure 8-8	100	150		kV/μS
Cı	Input capacitance	$VI = V_{DDA}/2 + 0.4 \times \sin(2\pi ft),$ f = 1 MHz, V_{DDA} = 5 V		4		pF

CA-IS3080WX, CA-IS3086WX:

	Parameters	Test conditions	Minimum value	ТҮР	Maximum value	Unit
V _{OD1}	Driver differential-output voltage	V _{DDB} = 5V	2.7	5	5.5	V
V _{OD2}	Driver differential-output voltage		1.5	3.7		
Δ V _{OD}	Change in differential output voltage between two states	R _L = 54Ω, see Figure 8-1	-0.2		0.2	V
Voc	Common-mode output voltage		1	V _{DDB} /2	3	V
ΔV _{OC}	change in steady-state common-mode output voltage between two states		-0.2		0.2	
I _{IH} ,I _{IL}	Input current(DI, DE)	V_{DI} , $V_{DE} = 0V$ or V_{DDA}	-20		20	μΑ
I _{os}	Short-circuit output current	DE = V_{DDA} , $V_Y = -7V$, $V_Z = 12V$ DE = V_{DDA} , $V_Y = 12V$, $V_Z = -7V$	-250		250	mA
CMTI	Common mode transient immunity	V _{CM} = 1500V; see Figure 8-8	100	150		kV/μS
Cı	Input capacitance	$VI = V_{DDA}/2 + 0.4 \times \sin(2\pi ft),$ $f = 1 \text{ MHz}, V_{DDA} = 5 \text{ V}$		4		pF

7.7.2. Receiver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified. **CA-IS3082WX**, **CA-IS3082WX**, **CA-IS3082WX**:

	Parameters	Test conditions	Minimum value	Typical value	Maximum value	Unit
V _{OH}	Output voltage high level	I _{OH} = -4mA;	V _{DDA} -0.4	4.8		V
V _{OL}	Output voltage low level	I _{OL} = 4mA;		0.2	0.4	V
V _{IT+(IN)}	Positive-going input threshold voltage			-110	-50	mV
V _{IT-(IN)}	Negative-going input threshold voltage		-200	-140		mV
V _{I(HYS)}	Receiver input hysteresis			30		mV
		V_A or V_B = 12 V, other logic input pins are connected to 0 V		75	125	
	Bus input current	V _A or V _B = 12 V, powered down, other logic input pins are connected to 0 V		80	125	
I _I		V_A or $V_B = -7$ V, other logic input pins are connected to 0 V	-100	-40		μΑ
		V_A or $V_B = -7$ V, powered down, other logic input pins are connected to 0 V	-100	-40		
R _{ID}	Differential input resistance	Measured between A and B	96			ΚΩ
I _{IH}	Input current on the $\overline{ m RE}$ pin	V _{RE} = HIGH	-20		20	μΑ
I _{IL}	Input current on the $\overline{ ext{RE}}$ pin	V _{RE} = LOW	-20		20	μΑ
C _D	Differential input capacitance	Input signal is f = 1.5 MHz, V _{pp} = 1V sinusoidal signals; measured between A and B		12		pF
Cı	Single-ended input capacitance	VI = 0.4 × sin (2πft), f = 1MHz		18		pF

CA-IS3080WX, CA-IS3086WX:

	Parameters	Test conditions	Minimum value	Typical value	Maximum value	Unit
V _{OH}	Output voltage high level	I _{OH} = -4mA;	V _{DDA} -0.4	4.8		V
V _{OL}	Output voltage low level	I _{OL} = 4mA;		0.2	0.4	V
V _{IT+(IN)}	Positive-going input threshold voltage			-100	-20	mV
V _{IT-(IN)}	Negative-going input threshold voltage		-200	-130		mV
V _{I(HYS)}	Receiver input hysteresis			30		mV
	ı Bus input current	V_A or V_B = 12 V, other logic input pins are connected to 0 V		75	125	
		V_A or V_B = 12 V, powered down, other logic input pins are connected to 0 V		75	125	
l _l		V_A or $V_B = -7$ V, other logic input pins are connected to 0 V	-100	-43		μΑ
		V_A or $V_B = -7$ V, powered down, other logic input pins are connected to 0 V	-100	-43		
R _{ID}	Differential input resistance	Measured between A and B	96			ΚΩ
I _{IH}	Input current on the $\overline{ ext{RE}}$ pin	V _{RE} = HIGH	-20		20	μΑ
I _{IL}	Input current on the $\overline{\text{RE}}$ pin	V _{RE} = LOW	-20		20	μΑ
C _D	Differential input capacitance	Input signal is f = 1.5 MHz, V _{pp} = 1V sinusoidal signals; measured between A and B		17		pF
Cı	Single-ended input capacitance	VI = 0.4 × sin (2πft), f = 1MHz		17		pF

7.8. Supply Current

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameters	Test conditions		Minimum value	Typical value	Maximum value	Unit
Lagia sida supply augrant	DE OVERV DE OVERV	V _{DDA} = 3.3V			7.6	mA	
ICCA	Logic side supply current	RE =0V or V_{DDA} , DE=0V or V_{DDA}	V _{DDA} = 5V			8	mA
I _{CCB}	Bus side supply current	\overline{RE} =0V or V _{DDA} , DE=0V, No bus los	ad			6.8	mA

7.9. Switching Characteristics

7.9.1. Driver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C,Min/Max specs are over recommended operating conditions unless otherwise specified. **CA-IS3082WX, CA-IS3082WX:**

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Driver Propagation Delay			100	250	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2 and Figure 8-3		5	20	ns
t _r	Differential output rise time			150	500	ns
t _f	Differential output fall time			150	500	ns
t_{PZH}, t_{PZL}	Driver enable time	See Figure 8-7		300	800	ns
t_{PHZ}, t_{PLZ}	Driver disable time			20	50	ns

CA-IS3088WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver Propagation Delay			20	50	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2 and Figure 8-3		3	12.5	ns
t _r	Differential output rise time			5	12	ns
t _f	Differential output fall time			5	12	ns
t _{PZH} , t _{PZL}	Driver enable time	See Figure 8-7		15	35	ns
t _{PHZ} , t _{PLZ}	Driver disable time			15	35	ns

CA-IS3080WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver Propagation Delay			300	620	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2 and Figure 8-3		5	30	ns
t _r	Differential output rise time			360	680	ns
t _f	Differential output fall time			360	680	ns
t _{PZH} , t _{PZL}	Driver enable time	See Figure 8-7		110	650	ns
t _{PHZ} , t _{PLZ}	Driver disable time			20	250	ns

CA-IS3086WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Driver Propagation Delay			16	48	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2 and Figure 8-3		3	12.5	ns
t _r	Differential output rise time	See rigule 6-2 allu rigule 6-5		3	10	ns
t _f	Differential output fall time			3	10	ns
t _{PZH} , t _{PZL}	Driver enable time	San Eigura 9 7		30	90	ns
t_{PHZ}, t_{PLZ}	Driver disable time	See Figure 8-7		25	50	ns

7.9.2. Receiver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

CA-IS3082WX, CA-IS3082WNX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver Propagation Delay			50	100	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5			12	ns
t _r	Differential output rise time			2.5	4	ns
t _f	Differential output fall time			2.5	4	ns
tphz, tplz	Driver enable time	See Figure 8-6		12	25	ns
tpzh, tpzl	Driver disable time, DE = 0V			12	25	ns

CA-IS3088WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver Propagation Delay			50	100	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5			8	ns
t _r	Differential output rise time	See Figure 6-4 and Figure 6-5		2.5	4	ns
t _f	Differential output fall time			2.5	4	ns
tphz, tplz	Driver enable time	See Figure 8-6		12	25	ns
tpzh, tpzl	Driver disable time, DE = 0V	See Figure 0-0		12	25	ns

CA-IS3080WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Driver Propagation Delay			30	120	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	Soo Figure 9.4 and Figure 9.5		7	25	ns
t _r	Differential output rise time	See Figure 8-4 and Figure 8-5		2.5	4	ns
t _f	Differential output fall time			2.5	4	ns
tphz, tplz	Driver enable time	San Figure 9 6		20	40	ns
tpzh, tpzl	Driver disable time, DE = 0V	See Figure 8-6		20	40	ns

CA-IS3086WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH} , t_{PHL}	Driver Propagation Delay			30	120	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5		7	25	ns
t _r	Differential output rise time	See Figure 6-4 and Figure 6-5		2.5	4	ns
t _f	Differential output fall time			2.5	4	ns
tphz, tplz	Driver enable time	San Figure 9 6		20	40	ns
tpzh, tpzl	Driver disable time, DE = 0V	See Figure 8-6		20	40	ns

8. Parameter Measurement Information

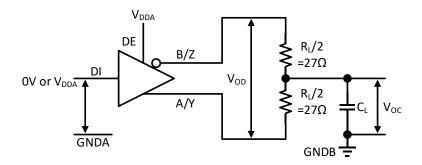


Figure 8-1 Driver DC test circuit

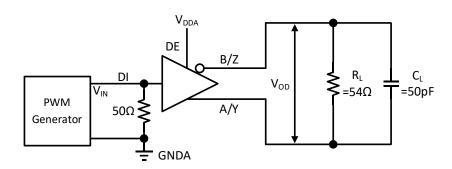


Figure 8-2 Driver propagation delays test circuit

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_f \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance

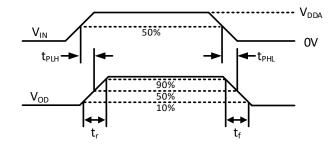


Figure 8-3 Driver propagation delays and rising/falling time

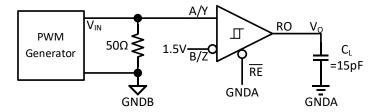


Figure 8-4 Receiver propagation delays test circuit

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_f \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance

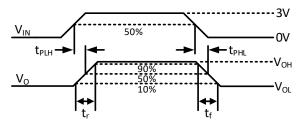


Figure 8-5 Receiver propagation delays and rising/falling time

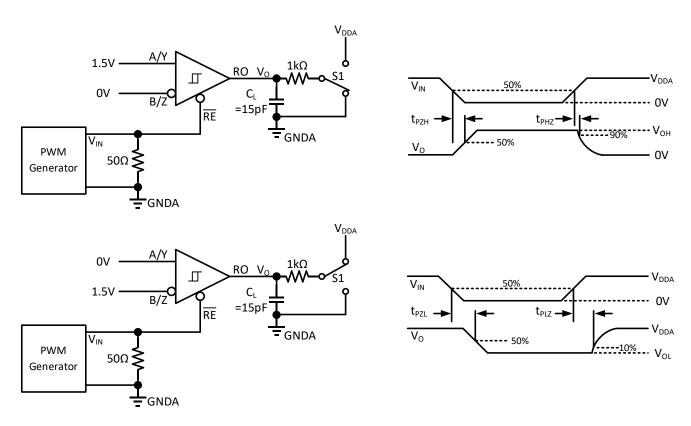


Figure 8-6 Receiver enable and disable timing

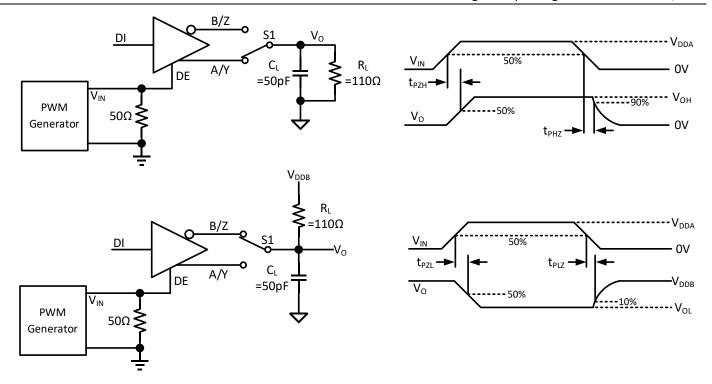


Figure 8-7 Driver enable and disable timing

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_f \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance

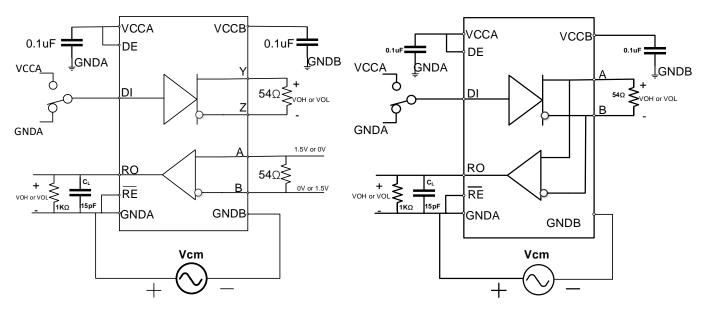


Figure 8-8 Common Mode Transient Immunity (CMTI) test for the full-duplex (left) and half-duplex (right)

9. Detailed Description

The CA-IS308x isolated RS485/RS422 transceivers provide up to 5kV_{RMS} of galvanic isolation between the cable side (busside) of the transceiver and the controller side (logic-side). These devices feature up to 150 kV/µs common mode transient immunity, allow up to 20Mbps (CA-IS3088)、10Mbps (CA-IS3086) or 0.5Mbps (CA-IS3080/82) communication across an isolation barrier. Robust isolation coupled with extended ESD protection and increased speeds enables efficient communication in noisy environments, making them ideal for communication between logic-side and bus-side in a wide range of applications, such as motor drives, PLC communication modules, telecom rectifiers, elevators, HVACs etc. applications. Two mechanisms against excessive power dissipation caused by faults or bus contention. The first, a current limit on the output stage, provides immediate protection against short circuits over the entire common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state. The CA-IS3080WX and CA-IS3086WX provide full-duplex transceivers, while CA-IS3082WX, CA-IS3082WNX, and CA-IS3088WX provide half-duplex transceivers for RS-485 communication.

9.1. Logic Input

The CA-IS308x devices include three logic inputs on the logic side: receiver enable, driver enable and driver digital input. The transmitter enable pin DE has an internal weak pull-down to GNDA; while the digital input DI and receiver enable \overline{RE} pins have an internal pull-up to V_{DDA} . All devices use 1.5M Ω pull-up or pull-down resistor for the logic inputs, see Figure 9 for the inputs equivalent circuit of the CA-IS308x series.

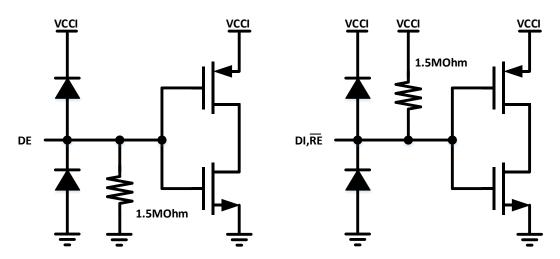


Figure 9-1 Logic input equivalent circuit

9.2. Receiver

The receiver reads the differential input from the bus line (Y/A and Z/B) and transfers this data as a single-ended, logic-level output RO to the controller. Driver the enable input \overline{RE} low to enable the receiver. Driver \overline{RE} logic high to disable the receiver. The truth table of receiver of CA-IS308x is shown below *Table 9-1*.

In case the receiver has been enabled, if the differential input voltage $V_{ID} = V_A - V_B$ is higher than or equal to the threshold voltage $V_{TH+(IN)}$, the RO pin output high level. Conversely, if the differential input voltage $V_{ID} = V_A - V_B$ is lower than the threshold voltage $V_{TH-(IN)}$, the RO pin output high level. if the differential input voltage V_{ID} is between $V_{TH-(IN)}$ and $V_{TH+(IN)}$, the RO pin output Indeterminate level.

In case the receiver has been disabled, the RO pin output high impedance. The receiver will disable when the \overline{RE} pin is floating why the internal \overline{RE} pin is weak pull-up to V_{DDA} .

Fail-safe feature is used to keep the receiver's output in a defined state when the receiver is not connected to the cable, the cable has an open or the cable has a short.

Table 9-1 CA-IS308x Receiver Truth Table

VDDA	VDDB	DIFFERENTIAL INPUT	ENABLE	OUTPUT
VDDA	VUUB	$(V_A - V_B)$	(RE)	(RO)
Powered up	Powered up	$V_{TH+(IN)} \le V_A - V_B$	L	Н
Powered up	Powered up	$V_{TH-\{IN\}} < V_A - V_B < V_{TH+\{IN\}}$	L	Indeterminate
Powered up	Powered up	$V_A - V_B \le V_{TH-\{IN\}}$	L	L
Powered up	Powered up	X	Н	Hi-Z
Powered up	Powered up	X	open	Hi-Z
Powered up	Powered up	Open/Short/Idle	L	Н
Powered down	Powered up	X	Х	Hi-Z
Powered up	Powered down	X	L	Н

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- 2. \overline{RE} has an internal weak pull-up to V_{DDA} .

9.3. Driver

The transmitter converts a single-ended input signal (DI) from the local controller to differential outputs for the bus lines Y/A and Z/B. The truth table for the transmitter is provided in *Table 9-2*. The driver outputs and receiver inputs are protected from ±20kV electrostatic discharge (ESD) to GNDB on the cable side, as specified by the Human Body Model (HBM). The driver outputs also feature current limiting protection and thermal shutdown. The DE pin of driver has an internal weak pull-down to GNDA, the driver is inhibited when the DE pin is floating. The DI pin of driver has an internal weak pull-up for CA-IS308x, When the driver DE pin is enabled, if the DI is floating, the driver output high level.

Table 9-2 CA-IS308x Transmitter Truth Table

VDDA	VDDB	INPUT	ENABLE INPUT	OUTPUTS			
VDDA	VDDB	(DI)	(DE)	Y/A	Z/B		
Powered up	Powered up	Н	Н	Н	L		
Powered up	Powered up	L	Н	L	Н		
Powered up	Powered up	Х	L	Hi-Z	Hi-Z		
Powered up	Powered up	Х	OPEN	Hi-Z	Hi-Z		
Powered up	Powered up	OPEN	Н	Н	L		
Powered down	Powered up	Х	Х	Hi-Z	Hi-Z		
Powered up	Powered down	Х	Х	Hi-Z	Hi-Z		
Powered down	Powered down	Х	Х	Hi-Z	Hi-Z		

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- 2. DE has an internal weak pull-down to V_{DDA}, DI has an internal weak pull-up to V_{DDA}.

9.4. Protection Functions

9.4.1. Signal Isolation

The CA-IS308x devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains.

9.4.2. Thermal Shutdown

If the junction temperature of the CA-IS308x device exceeds the thermal shutdown threshold $T_{J(shutdown)}$ (160°C, typ.), the driver outputs go high-impedance state. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range of the device.

9.4.3. Current-Limit

The CA-IS308x protect the transmitter output stage against a short-circuit to a positive or negative voltage over the common mode voltage range of -7V to +12V(CA-IS3082/88) and -15V to +15V(CA-IS3080/86) by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

10. Applications Information

CA-IS308x family consists of half-duplex and full-duplex RS-485 transceivers commonly used for asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the configuration of different operating modes to avoid conflicts of bus line. Full-duplex implementation requires two signal pairs (four wires), and allows each node to transmit data on one pair while simultaneously receiving data on the other pair. When the number of nodes is greater than 2, user carefully need to control the enable function of driver to avoid conflicts of bus line also.

10.1. Typical Application

An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. As seen in the following typical network application circuit, *Figure 10-1* show typical network application circuits for the full-duplex RS422 transceivers. The driver of Master be able to send data to multiple slaves, which can receive data from slaves at the same time. *Figure 10-2* show typical network application circuits for the half-duplex RS485 transceivers. Contrast to full-duplex transceivers, which can reduce a pair of cables.

The maximum recommended data rate in the RS-485/RS422 network is 10Mbps, which can be achieved at a maximum cable length of 40ft (12m). The absolute maximum distance is 4000ft (1.2km) of cable, at which point, data rate is limited to 100kbps. These were the specifications made in the original standard, new RS-485 transceivers and cables are pushing the limit of RS-485 far beyond its original definitions. However, the maximum data rate is still limited by the bus loading, number of nodes, cable length etc. factors. For RS485 network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. To minimize reflections, terminate the line at both ends with a termination resistor (120Ω in the typical application circuits), whose value matches the characteristic impedance (Z_0) of the cable, and keep stub lengths off the main line as short as possible. The termination resistors should always be placed at the far ends of the cable. As a general rule moreover, termination resistors should be placed at both far ends of the cable. This method, known as parallel termination, generally allows for higher data rates over longer cable length.

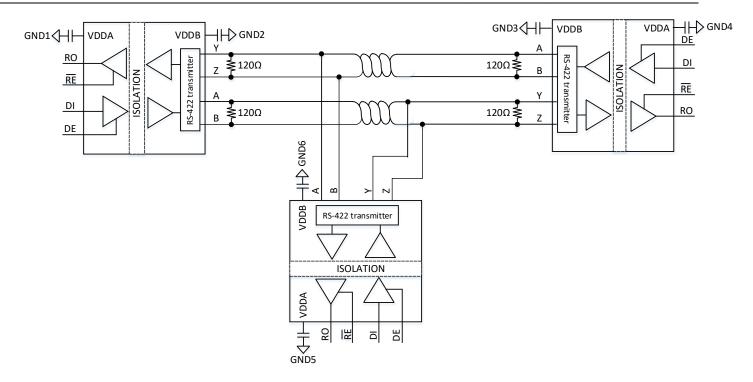


Figure 10-1 Typical isolated full-duplex RS422 application circuit

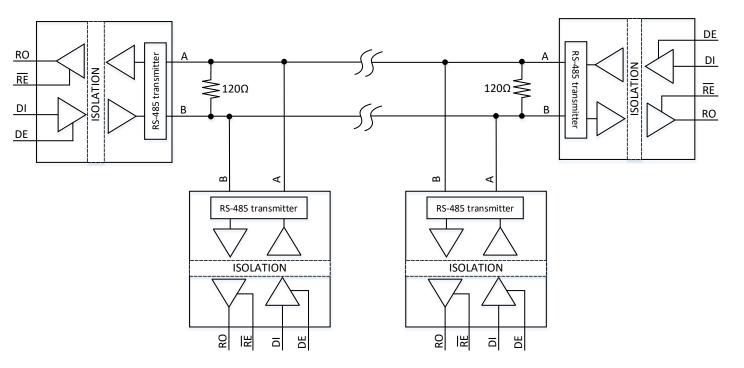
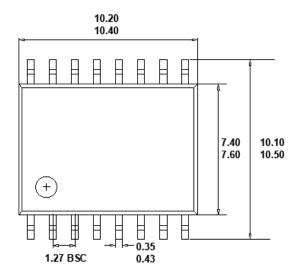
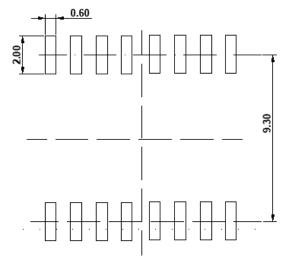


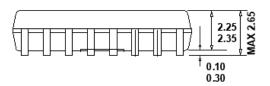
Figure 10-2 Typical isolated half-duplex RS485 application circuit

10.2. 256 transceivers on the bus

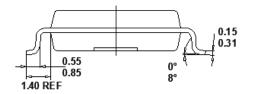
The maximum number of transceivers and receivers allowed depends on how much each device loads down the system. All devices connected to an RS-485 network should be characterized in regard to multiples or fractions of unit loads. The maximum number of unit loads allowed one twisted pair, assuming a properly terminated cable with a characteristic impedance of 120Ω or more, is 32 (375 Ω). The CA-IS308x transceivers have a 1/8-unit load (96k Ω) receiver, which allows up to 256 transceivers, connected in parallel, on one communication line.


10.3. PCB Layout


It is recommended to design an isolation channel underneath the isolator that is free from ground and signal planes. Any galvanic or metallic connection between the cable side and logic side will defeat the isolation. To make sure device operation is reliable at all data rates and supply voltages, the decoupling capacitors between VDDA and GNDA and between VDDB and GNDB are recommended. The capacitors should be located as close as possible to the IC to minimize inductance.


11. Package Information

The following diagrams illustrate the dimension diagram of CA-IS308x series digital isolators packaged in SOIC16-WB wide package and the suggested pad dimension diagram, wherein dimensions are in millimeters.



TOP VIEW

RECOMMMENDED LAND PATTERN

FRONT VIEW

LEFT SIDE VIEW

12. Soldering Temperature (reflow) Profile

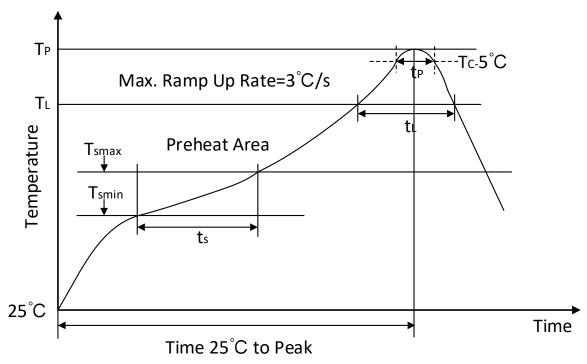
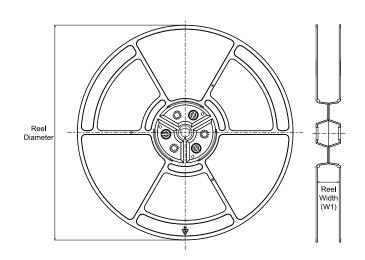
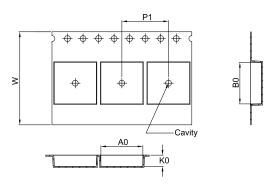


Figure. 12-1 Soldering Temperature (reflow) Profile

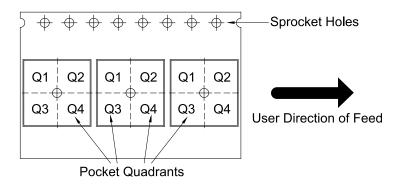

Table. 12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 °C to Peak)	3°C/second max
Time of Preheat temp(from 150 $^{\circ}\mathrm{C}$ to 200 $^{\circ}\mathrm{C}$	60-120 second
Time to be maintained above 217 $^{\circ}\mathrm{C}$	60-150 second
Peak temperature	260 +5/-0 ℃
Time within 5 ℃ of actual peak temp	30 second
Ramp-down rate	6 ℃/second max.
Time from 25 ℃ to peak temp	8 minutes max



13. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
КО	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3080WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3086WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3082WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3082WNX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3088WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14. Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com