

1.5W, 5kV_{RMS} Complete Isolated DC-DC Converter

1 Features

- Complete Switch Mode Power Supply
- High integration with internal transformer
- Soft-start reduces input inrush current and output overshoot
- Hiccup current-limit protection
- Thermal shutdown
- 4.5 V to 5.5 V Input Voltage Range
- Selectable Output voltages
- 3.3V and 5V output options
- 3.7V and 5.4V output options provide headroom voltage to power LDO
- Delivers up to 1.5W(5V/300mA) Typical Output Power
- Excellent Load Transient Response
- Complies with CISPR32 Class B Radiated Emissions
- Up to ±3kV HBM and ±2kV CDM ESD protection
- Robust Galvanic Isolation Barrier
- High lifetime: > 40 years
- Up to 5kV_{RMS} isolation rating
- ±150 kV/µs typical CMTI
- Wide Operating Temperature Range: -40°C to 125°C
- Low Profile SOIC16-WB (10.30mm × 7.50) Package
- Safety-Related Certifications (Pending)
 - VDE certification according to DIN EN IEC60747-17(VDE 0884-17):2021-10
 - UL certification according to UL1577
 - CQC certification according to GB4843.1-2022

2 Applications

- Instruments and Apparatuses
- Industrial automation
- Motor Control
- Medical Equipment
- Industrial Sensors
- Telecom Equipment

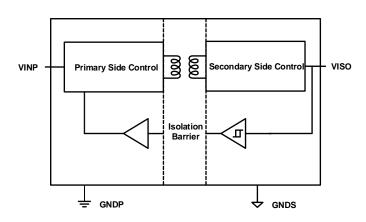
3 General Description

The CA-IS3115AW is a family of complete isolated DC-DC converters with up to $5kV_{RMS}$ isolation rating. These

devices integrate most of the components needed for an isolated power supply —switching controller, power switches, transformer, soft-start, protection circuit etc. into a single, compact SOIC package. The result is an efficient and compact fully integrated solution that is easy to comply with EMI requirements and makes power-supply isolation design as easy as possible. Operating over an input voltage range of 4.5V to 5.5V, the CA-IS3115AW devices provide a fixed output voltage of 3.3V, 3.7V, 5V or 5.4V set by pin SEL. 3.7V and 5.4V output options provide headroom voltage to power an LDO. Only output, input bypass capacitors, and a pull-up resistor for 3.7V or 5.4V outputs are needed to finish the design.

The CA-IS3115AW devices feature a unique control scheme, which can quickly respond to load transient and accurately regulate the output voltage. The devices are capable of delivering a load up to 1.5W output power and offering soft-start, current limit, short-circuit protection and thermal shutdown protection features to better enhance the reliability of the system. The CA-IS3115AW devices include an enable input pin (EN). Connect the EN pin to the VINP input voltage or force this pin high to turn on the DC-DC converter. Force this pin low to disable the device and enter shutdown mode. In shutdown mode, the device stops switching operation with microampere standby supply current.

The CA-IS3115AW devices are available in wide-body SOIC16 package with creepage and clearance > 8mm, and operate over -40°C to +125°C temperature range.


Device Information

Part number	Package	Package size (NOM)
CA-IS3115AW	SOIC16-WB(W)	10.30 mm × 7.50 mm

CA-IS3115AW Version1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

Simplified Block Diagram

4 Ordering Information

Table 4-1. Ordering Information

Part #	Output Power (W)	Isolation Rating(kV _{RMS})	Package
CA-IS3115AW	1.5	5.0	SOIC16-WB

Table of Contents

Featur	res	1
Applic	ations	1
Gener	al Description	1
Order	ing Information	2
Revisi	on history	3
Pin Co	nfiguration and Description	4
Specif	ications	5
7.1	Absolute Maximum Ratings ^{1, 2}	5
7.2	ESD Ratings	5
7.3		
7.4	Thermal Information	5
7.5	Power Ratings	5
7.6	Insulation Specifications	6
7.7	Safety-Related Certifications	7
7.8	Electrical Characteristics	8
7.9	MSL	8
	Applic Gener Order Revisio Pin Co Specif 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	 7.2 ESD Ratings

	7.10	Тур	ical Operating Characteristics	9
8	Detai	led D	escription	13
	8.1	Ove	erview	13
	8.2	Out	put Voltage Selection	13
	8.3 Protection Functions		14	
	8.3.1 UVLO and Soft-Start		14	
	8.3	3.2	Current-limit Protection	14
	8.3	3.3	Thermal Shutdown	14
9	Appli	catio	ns Information	15
	9.1	Тур	ical Application Circuit	15
	9.2	Inp	ut and Output Capacitors	15
	9.3	PCE	B Layout Guidelines	15
10	Packa	ige Ir	formation	17
11	Solde	ring	Temperature (reflow) Profile	18
12	Tape	and I	Reel Information	19
13	Impo	rtant	statement	20

5 Revision history

Revision Number	Description	Revised Date	Page Changed
Preliminary Version	N/A	2023/10/17	N/A
Version 1.00	Update isolation ratings	2023/12/01	6,7
Version 1.01	Adds output derating curves	2024/01/03	11,12
Version 1.02	Adds Short circuit protection function description	2024/01/09	14
Version 1.03	Update VDE, UL, CQC, TUV information Update the test conditions of V _{IOSM}	2024/04/16	1,6,7
Version 1.04	Update the test conditions of VISO _(LOAD)	2024/05/14	8
Version 1.05	Add Capacitor value range in VISO pin in table of section 7.3 Update the Maximum Value of I _{VINP_SC} Update Figure 9-2. Recommended Bypass Capacitors Placement	2024/06/19	5,8,16

CHIPANALOG

Shanghai Chipanalog Microelectronics Co., Ltd.

6 Pin Configuration and Description

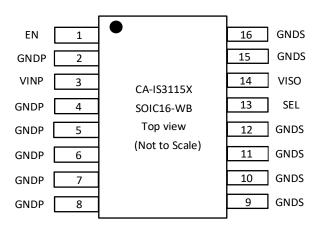


Figure 6-1. CA-IS3115AW Top View

Table 6-1. CA-IS3115AW Pin Description

Pin name	Pin number	Туре	Description
EN	1	Input	Enable input, active-high. Force this pin high to enable the device. Force this pin low to disable the device and put the device into shutdown mode.
VINP	3	Power	Primary side supply input. Connect VINP to GNDP with both 0.1μ F and 10μ F capacitors as close to the device(pin 3 and pin 4) as possible.
GNDP	2, 4, 5, 6, 7, 8	GND	Primary side local ground.
GNDS	9, 10, 11, 12, 15, 16	GND	Secondary side ground return connection for V _{ISO} .
SEL	13	Input	Output voltage V _{ISO} select pin: $V_{ISO} = 5.0 V$ when SEL is shorted to VISO; $V_{ISO} = 5.4 V$ when SEL is connected to VISO through a 100k Ω resistor; $V_{ISO} = 3.3 V$ when SEL is shorted to GNDS; $V_{ISO} = 3.7V$ when SEL is connected to GNDS through a 100k Ω resistor. Don't leave SEL pin open.
VISO	14	Power	Isolated supply voltage pin. Connnect VISO to GNDS with both 0.1μ F and 10μ F capacitors as close to the device(pin 14 and pin 15) as possible.

7 Specifications

7.1 Absolute Maximum Ratings^{1, 2}

	Parameters	Minim valu		Unit
V _{INP}	Power supply voltage	-0.5	5 6.0	V
V _{ISO}	Isolated supply voltage	-0.5	5 6.0	V
EN	EN input voltage	-0.5	5 V _{INP} +0.3 ³	V
SEL	SEL input voltage	-0.5	5 V _{ISO} +0.3 ³	V
Tj	Junction temperature	-40) 150	°C
T _{STG}	Storage temperature range	-65	5 150	°C
Notes:				
1. The stresses list	ted under "Absolute Maximum Ratings" are stress ratings only	, not for functional operati	on condition. Exposure	to absolute

maximum rating conditions for extended periods may cause permanent damage to the device.

- All voltage values are with respect to the local ground (GNDP or GNDS) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6 V.

7.2 ESD Ratings

			Value	Unit	
ν.	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±3000	V	
VEST	Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000	v	
Not	Notes:				
1.	Per JEDEC document JEP155	, 500V HBM allows safe manufacturing of standard ESD control process.			
2.	Per JEDEC document JEP157	, 250V CDM allows safe manufacturing of standard ESD control process.			

7.3 Recommended Operating Conditions

	Parameters	Minimum value	Typical value	Maximum value	Unit
VINP	Power supply voltage	4.5	5	5.5	V
V _{EN}	EN input voltage	0		5.5	V
V _{ISO}	Isolated supply voltage	0		5.7	V
V _{SEL}	SEL input voltage	0		5.7	V
C _{VISO}	Capacitor value range in VISO pin	4.7	10	1000	μF
T _A	Ambient Temperature	-40		125	°C
Tj	Junction temperature	-40		150	°C

7.4 Thermal Information

Thermal Metric		CA-IS3115AW	Unit
		SOIC16-WB(W)	Unit
R _{0JA}	Junction-to-ambient thermal resistance	68	°C/W
R _{θJC}	Junction-to-case thermal resistance	18	

7.5 Power Ratings

	Parameters	Test Conditions	Minimum value	Typical value	Maximum value	Unit
PD	Power dissipation	V_{INP} = 5.5V, V_{ISO} = 5.4V, 300mA output current			3	W

CA-IS3115AW

Version1.05

7.6 **Insulation Specifications**

Parameters

Shanghai Chipanalog	Microelectronics Co	., Ltd.
Test Conditions	Value	Unit
Shortest terminal-to-terminal distance through air	8	mm

CLR	External clearance	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	IEC 60664-1 over-voltage category	Rated mains voltage ≤ 600 V _{RMS}	I-IV	
		Rated mains voltage ≤ 1000 V _{RMS}	-	
DIN V V	/DE V 0884-17:2021-10 ¹			•
VIORM	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	2121	V _{PK}
V _{IOWM}	Maximum operating isolation voltage	AC voltage; time-dependent dielectric breakdown (TDDB) test	1500	V _{RMS}
- 10 101		DC voltage	2121	V _{DC}
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, t=60 s (qualification); $V_{TEST} = 1.2 \times V_{IOTM}$, t=1 s (100% product test)	7070	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ²	Test method per IEC 62368-1, 1.2/50 μ s waveform, V _{TEST} = 1.6 × V _{IOSM} (qualification)	8000	V _{PK}
		Method a, after input/output safety tests subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10s$	≤5	
q _{pd}	Apparent charge ³	Method a, after environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10s$	≤5	pC
		Method b1, at routine test (100% production test) and preconditioning (sample test) $V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1s$; $V_{pd(m)} = 1.875 \times V_{IORM}$, $t_m = 1s$	≤5	
CIO	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times sin (2\pi ft), f = 1 MHz$	3.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	
R _{IO}	Isolation resistance , input to output ⁴	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>1011	Ω
		V _{IO} = 500 V at T _S = 150°C	>109	
	Pollution degree		2	
UL 1577	7	·		•
V _{ISO}	Maximum isolation voltage	$V_{\text{TEST}} = V_{\text{ISO}}$, t = 60 s (certified) $V_{\text{TEST}} = 1.2 \times V_{\text{ISO}}$, t = 1 s (100% production test)	5000	V _{RMS}

means of suitable protective circuits.

2. Devices are immersed in oil during surge characterization.

3. The characterization charge is discharging charge (pd) caused by partial discharge.

Capacitance and resistance are measured with all pins on field-side and logic-side tied together. 4.

7.7 Safety-Related Certifications

VDE	UL	CQC
Certified according to DIN V VDE V 0884-	Certified according to UL 1577	Certified according to GB4943.1-2011
17:2021-10	Component Recognition Program	
Maximum transient isolation voltage: 7070 V _{PK}	Maximum isolation voltage: 5000 V _{RMS}	reinforced isolation
Maximum repetitive peak isolation voltage:		(Altitude≤5000m)
2121 V _{PK}		
Maximum surge isolation voltage: 8000 V_{PK}		
Certificate number: 40057278 (reinforced	Certificate number: E511334	Certification number: CQC23001406424
isolation)		

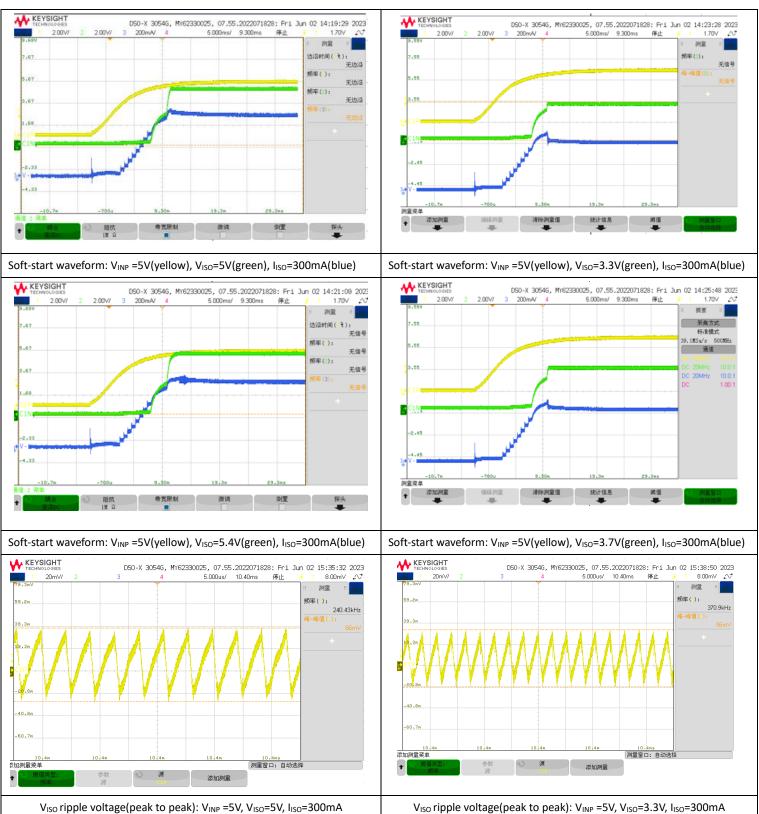
CA-IS3115AW

Version1.05

Shanghai Chipanalog Microelectronics Co., Ltd.

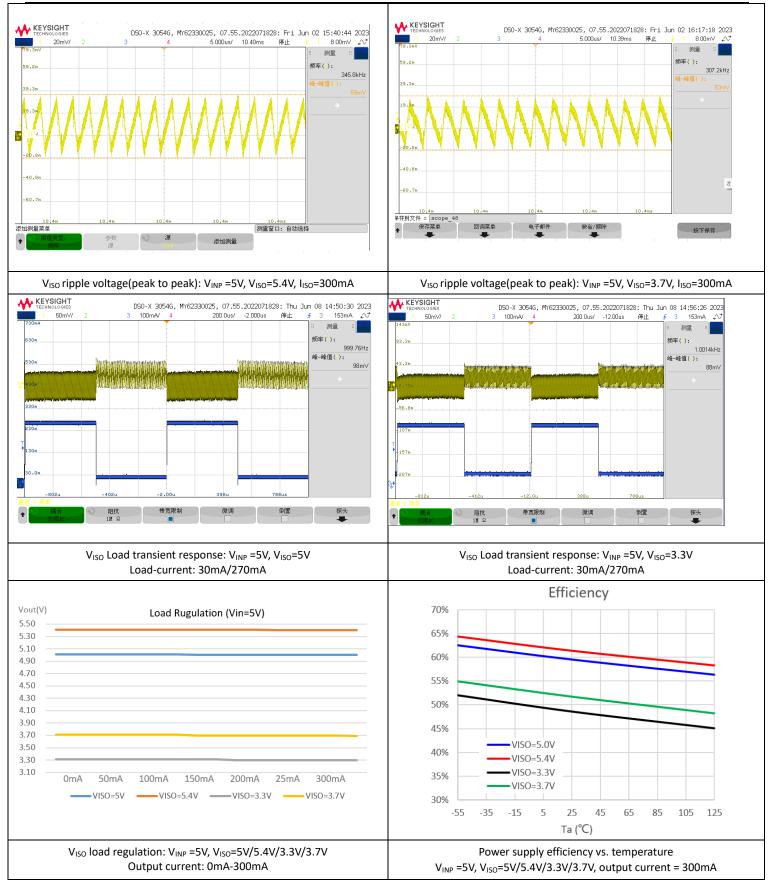
7.8 Electrical Characteristics

Over operating temperature range $T_A = -40$ to 125°C, $V_{INP} = 4.5V$ to 5.5V, SEL connected to V_{ISO} , $C_{VINP} = C_{VISO} = 10\mu$ F, unless otherwise specified. All typical specs are at $T_A = 25$ °C and $V_{INP} = 5V$.

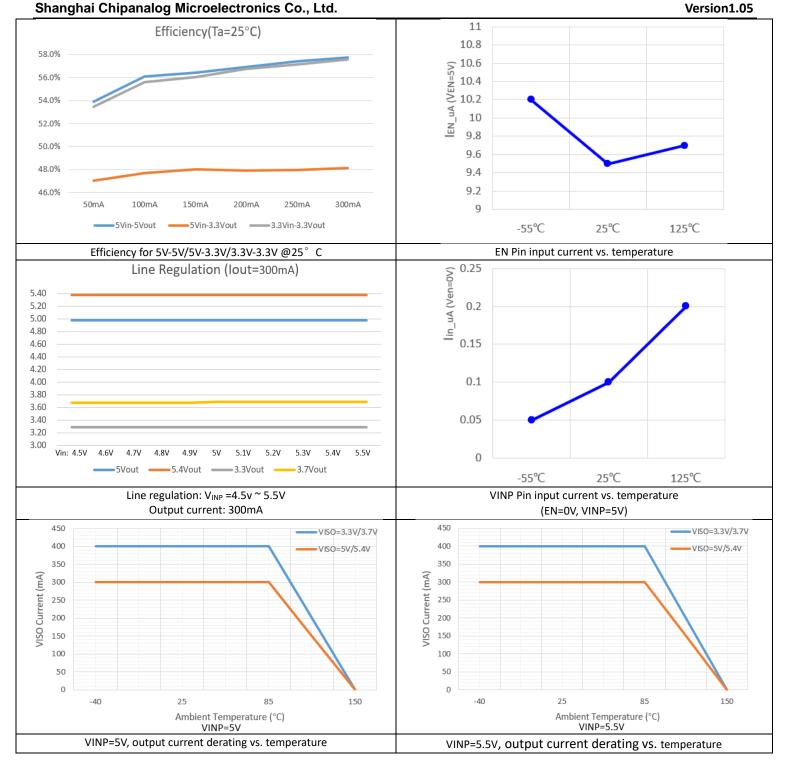

	Parameters	Test Conditions	Minimum value	ТҮР	Maximum value	Unit	
Power Sup	pply Input						
$I_{\text{VINP}_{SD}} \ V_{\text{INP}}$	shutdown current	EN = LOW		0.5	30	μΑ	
		EN = HIGH, SEL connected to V _{ISO} (5V output)		4.9	20	mA	
I _{VINP_O}	V _{INP} quiescent current	EN = HIGH, SEL 100k Ω to VISO (5.4Voutput)		5.2	20	mA	
	I _{OUT} = 0% load	EN = HIGH, SEL connected to GNDS (3.3V output)		4.1	20	mA	
		EN = HIGH, SEL 100k Ω to GNDS (3.7V output)		4.3	20	mA	
I _{VINP_SC}	DC current from VINP supply under short circuit on VISO			77	125	mA	
V _{UVLO+}	Input undervoltage lockout rising threshold			2.7	3	V	
V _{UVLO-}	Input undervoltage lockout falling threshold		2.1	2.3		v	
VHYS(UVLO)	Input undervoltage lockout hysteresis			0.4	0.6	V	
EN, SEL pir	ns						
V_{IH_EN}	EN Input threshold, logic HIGH		0.7V _{INP}			V	
VIL_EN	EN Input threshold, logic LOW				0.3V _{INP}	V	
I _{EN}	Input leakage current	$V_{INP} = 5V$, $V_{EN} = 5V$		10	20	μΑ	
Isolated D	C-DC Converter						
		SEL connected to V_{ISO} (5V output), I_{ISO} = 150mA	4.75	5.0	5.25		
	Isolated output voltage	SEL 100K Ω to VISO (5.4V output), I _{ISO} = 150mA	5.13	5.4	5.67	v	
Viso		SEL connected to GNDS (3.3V output), I _{ISO} = 200mA	3.13	3.3	3.47		
		SEL 100K Ω to GNDS (3.7V output), I _{ISO} = 200mA	3.51	3.7	3.89		
		SEL connected to V _{ISO} (5V output)	240	300			
	Maximum load currrent	SEL 100KΩ to VISO (5.4V output)	240	300		- mA	
LOAD_MAX		SEL connected to GNDS (3.3V output)	320	400			
		SEL 100KΩ to GNDS (3.7V output)	320	400			
VISO(RIP)	Voltage ripple on isolated supply	20MHz bandwidth, SEL short to VISO (5V input, 5V or 5.4V output),I _{ISO} = 150mA		65			
	output (pk-pk)	20MHz bandwidth, SEL short to GNDS (5V input, 3.3V or 3.7V output), $I_{ISO} = 200$ mA		55		mV	
VISO(LINE)	Line regulation	SEL short to VISO (5V or 5.4V output), $I_{\rm ISO}$ = 150mA, $V_{\rm INP}$ = 4.5V to 5.5 V		4	20	mV/V	
VISO(LINE)	Line regulation	SEL short to GNDS (3.3V or 3.7V output), $I_{\rm ISO}$ = 200mA, $V_{\rm INP}$ = 4.5V to 5.5V		4	20	1110/0	
VISO(LOAD)		SEL short to VISO (5V input, 5V or 5.4V output), I_{ISO} = 0 to 240mA		0.5%	2%		
(LUAD)	Load regulation	SEL short to GNDS (5V input, 3.3V or 3.7V output), $I_{ISO} = 0$ to 320mA		0.5%	2%		
EFF	Efficiency@maximum load current	$I_{ISO} = 300 \text{ mA}, C_{LOAD} = 0.1 \mu \text{F} 10 \mu \text{F}; V_{ISO} = 5 \text{V}, 5.4 \text{V}$		60%			
		$I_{ISO} = 300$ mA, $C_{LOAD} = 0.1\mu$ F 10μ F; $V_{ISO} = 3.3$ V, 3.7 V		50%			
CMTI	Common-mode transient immunity	Slew Rate of GNDP versus GNDS, V_{CM} =1200 V_{RMS}	±150			kV/μs	
trise	V _{ISO} rise time	10% to 90%, V _{ISO} =3.3V, 3.7V, 5.0V, 5.4V		1		ms	
V _{ISO} ripple	voltage (peak to peak)	10% to 90% load step with 10mA/µs slew-rate; VISO		100		mV	
VISO load tr	ansient response	ripple voltage difference at two loads		5		μs	

7.9 **MSL**

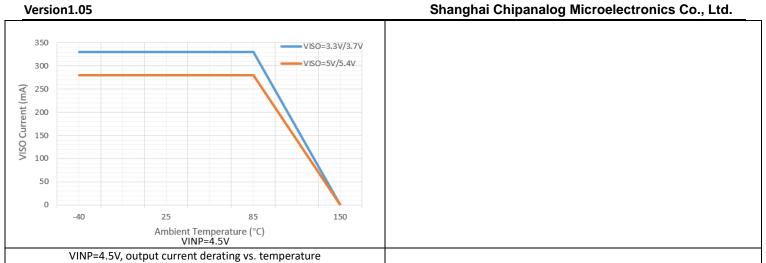
Parameters	Standard	Level		
MSL	IPC/JEDEC J-STD-020D.1	MSL 3		



7.10 Typical Operating Characteristics



CA-IS3115AW Version1.05



CA-IS3115AW Version1.05

CA-IS3115AW Version1.05

8 Detailed Description

8.1 Overview

The CA-IS3115AW is a family of complete isolated DC-DC converters designed to provide isolated power with up to 1.5W output power across a $5kV_{RMS}$ isolation barrier. The devices operate over 4.5V to 5.5V input voltage range and use a proprietary control mechanism. The input supply V_{INP} is provided to the primary power controller that switches the power stage connected to the integrated transformer. Power is transferred to the secondary side and regulated to a fixed output voltage set by the SEL pin. The soft-start feature allows to reduce input inrush current and avoid output overshoot. These devices also incorporate an output enable (EN) control and undervoltage lockout(UVLO) function that allows the user to turn on the part at the desired input-voltage level. Figure 8-1 shows the CA-IS3115AW's functional block diagram. Connect the EN pin to VINP or force this pin high to turn on the DC-DC converter. Force this pin low to disable the device and enter low-current shutdown mode. These devices offer a ready-made, reliable, easy-to-use solution and allow users save PCB space and reduce design time for the popular 5V, 3.3V power supply systems.

These devices are provided with a robust overcurrent protection scheme that protects the devices under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the switching operation and triggers hiccup mode. Once the hiccup timeout period expires, soft-start is attempted again. Hiccup mode operation ensures low power dissipation under output short-circuit conditions.

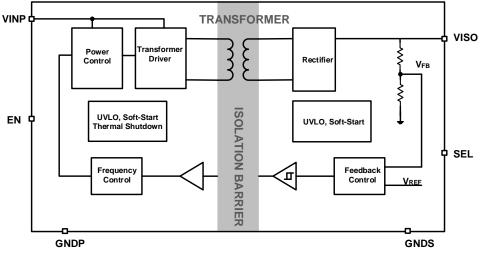


Figure 8-1. Functional Block Diagrams

8.2 Output Voltage Selection

At startup, the CA-IS3115AW monitors the state of pin SEL after applying V_{INP} supply voltage above the UVLO rising threshold or enabling via the EN pin, to build the desired regulation voltage level for the V_{ISO} output. See Table 8-1 for the output voltage selection.

EN	SEL	VISO
High	Sorted to VISO	5V
High	100kΩ to VISO	5.4V
High	Shorted to GNDS	3.3V
High	100KΩ to GNDS	3.7V
High	OPEN	Unsupported
Low	X	0V
Note: Don't leave SEL nin open		

Table 8-1. VISO Output Voltage Selection

8.3 **Protection Functions**

8.3.1 UVLO and Soft-Start

Shanghai Chipanalog Microelectronics Co., Ltd.

The CA-IS3115AW undervoltage lockout (UVLO) on both V_{INP} power supply and V_{ISO} isolated supply. Upon power-up, the primary side transformer driver is disabled while the V_{INP} voltage is below the threshold voltage V_{UVLO+} (2.7V, typ.), and V_{ISO} output is off. The output powers up once the threshold is met. This allows the user to turn on the part at stable input-voltage level.

For many applications, it is necessary to minimize the inrush current at start-up. The CA-IS3115AW devices built-in softstart circuit significantly reduces the start-up current spike and output voltage overshoot. Once input power supply is applied at VINP pin, the internal soft-start circuit will control the power delivered to the output gradually increase, allowing for a graceful turn-on ramp.

8.3.2 Current-limit Protection

The CA-IS3115AW devices are provided with an over-current protection scheme that protects the device under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the switching operation and triggers a hiccup mode whenever the switch current exceeds the internal current limit. Once the hiccup timeout period expires, soft-start is attempted again. The hiccup condition is cleared when the over-current is removed.

8.3.3 Thermal Shutdown

Thermal-shutdown protection limits total power dissipation in the device. When the junction temperature of the device exceeds $175^{\circ}C(T_{SD})$, an on-chip thermal sensor shuts down the device, allowing the device to cool. The thermal sensor turns the device on again after the junction temperature cools and junction temperature drops to normal operation temperature range (< $150^{\circ}C$) of the device.

9 Applications Information

9.1 Typical Application Circuit

The CA-IS3115AW devices are high-integration isolated power supply solution. Included in the package are the switching controller, power switches, transformer, and all support components. Only output and input bypass capacitors are needed to finish the design. For the applications with LDO post regulator, it needs a single $100k\Omega$ external resistor to set the output level to 3.7V or 5.4V, see Figure 9-1 typical application circuit.

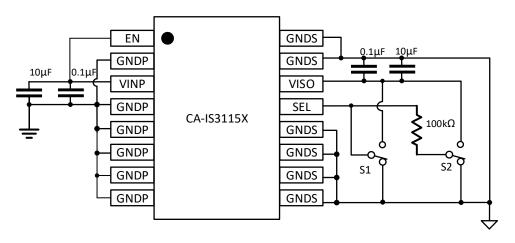


Figure 9-1. CA-IS3115AW Typical Application Circuit

9.2 Input and Output Capacitors

The input capacitors (between VINP and GNDP) are required to reduce the peak current drawn from input power source and reduce the switching noise, increase efficiency. For the input capacitors, choose the ceramic capacitor because they have the lowest equivalent series resistance (ESR), smallest size, and lowest cost. For most applications, we recommend to use at least 0.1μ F and 10μ F ceramic capacitors with X5R or X7R temperature characteristic.

The output capacitors between VISO and GNDS are required as well to keep the output voltage ripple small and to ensure loop stability. These bypass capacitors must have low impedance at the switching frequency. Ceramic capacitors are recommended due to their small size and low ESR. Make sure the capacitors do not degrade their capacitance significantly over temperature and DC bias. It is recommended to have at least 10μ F of effective capacitance at output.

9.3 PCB Layout Guidelines

High switching frequencies and large peak currents make PCB layout a very important part of the isolated DC-DC converter design. Good PCB design minimizes excessive electromagnetic interference (EMI) and voltage gradients in the ground plane to avoid instability and regulation errors. Even with the high level of integration, like CA-IS3115AW, users may fail to achieve specified operation with a haphazard or poor layout. So careful PCB layout is critical to achieve clean and stable operation, and ensure that the grounding and heat sinking are acceptable.

Place the input capacitors, output capacitors, and the CA-IS3115AW IC on the same PCB layer. Place decoupling capacitors as close as possible to the CA-IS3115AW device pins, see Figure 9-2 recommended components placement for the PCB layout. The paths must be wide and short to minimize inductance, also any via holes must be avoided on these paths. Connect all of the ground (GNDP, GNDS) connections to as large a plane area as possible for best heat-sinking. To ensure isolation performance between the primary side and secondary side, on the top layer and bottom layer keep the space under the CA-IS3115AW device free from traces, vias, and pads to maintain maximum creepage distance (≥ 8mm).

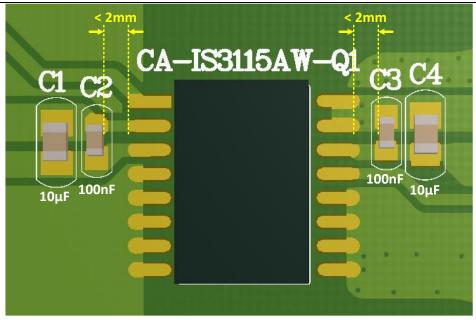
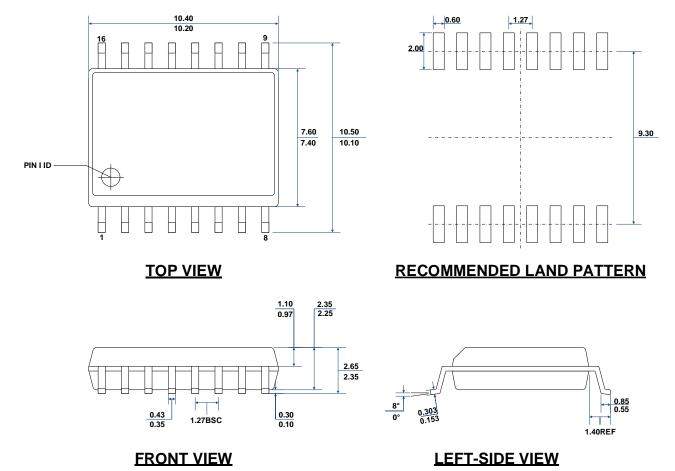
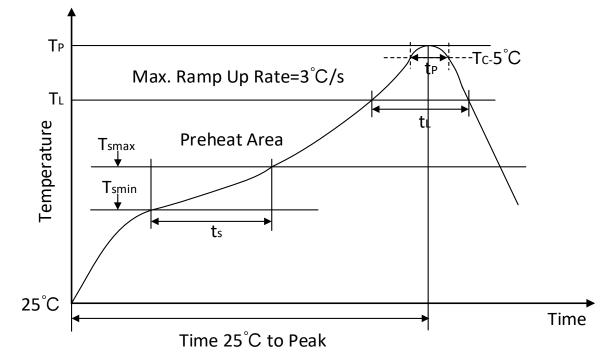



Figure 9-2. Recommended Bypass Capacitors Placement



10 Package Information

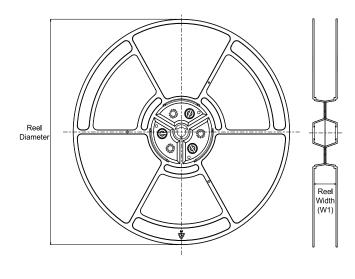
The following figure illustrates the size drawing and recommended pad size of SOIC16-WB wide-body package for the CA-IS3115AW isolated DC-DC converter. All dimensions are in millimeters.

11 Soldering Temperature (reflow) Profile

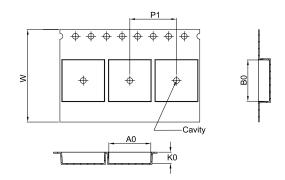
Figure 11-1. Soldering Temperature (reflow) Profi

Table 11-1. Soldering T	emperature Parameter
-------------------------	----------------------

Profile Feature	Pb-Free Assembly					
Average ramp-up rate(217 °C to Peak)	3°C /second max					
Time of Preheat temp(from 150°C to 200°C	60-120 second					
Time to be maintained above 217°C	60-150 second					
Peak temperature	260 +5/-0 °C					
Time within 5°C of actual peak temp	30 second					
Ramp-down rate	6°C /second max.					
Time from 25°C to peak temp	8 minutes max					

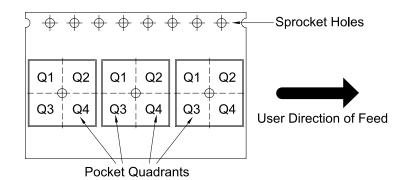


12


Shanghai Chipanalog Microelectronics Co., Ltd.

REEL DIMENSIONS

Tape and Reel Information



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
BO	Dimension designed to accommodate the component length
К0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

D	Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS	S3115AW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1

13 Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com