

1.5W, 5kV_{RMS} Complete Isolated DC-DC Converter

1 Features

Complete Switch Mode Power Supply

- High integration with internal transformer
- Soft-start reduces input inrush current and output overshoot
- Hiccup current-limit protection
- Thermal shutdown
- 4.5 V to 5.5 V Input Voltage Range
- Selectable Output voltages
- 3.3V and 5V output options
- 3.7V and 5.4V output options provide headroom voltage to power LDO
- Delivers up to 1.5W(5V/300mA) Typical Output Power
- Excellent Load Transient Response
- Complies with CISPR32 Class B Radiated Emissions
- Up to ±3kV HBM and ±2kV CDM ESD protection
- Robust Galvanic Isolation Barrier
 - High lifetime: > 40 years
- Up to 5kV_{RMS} isolation rating
- ±150 kV/µs typical CMTI
- Wide Operating Temperature Range: -40°C to 125°C
- Low Profile SOIC16-WB (10.30mm×7.50mm) Package
- Safety-Related Certifications
 - VDE certification according to DIN EN IEC 60747-17(VDE 0884-17):2021-10
 - UL certification according to UL 1577
 - CQC certification according to GB4943.1-2022
 - TUV certification (Pending)

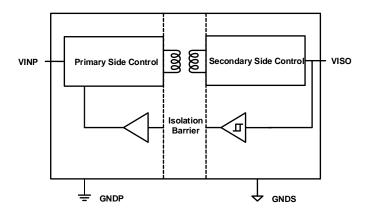
2 Applications

- Instruments and Apparatuses
- Industrial automation
- Motor Control
- Medical Equipment
- Industrial Sensors
- Telecom Equipment

3 General Description

The CA-IS3115AW is a family of complete isolated DC-DC converters with up to 5kV_{RMS} isolation rating. These devices integrate most of the components needed for an isolated power supply —switching controller, power switches, transformer, soft-start, protection circuit etc. — into a single, compact SOIC package. The result is an efficient and compact fully integrated solution that is easy to comply with EMI requirements and makes power-supply isolation design as easy as possible. Operating over an input voltage range of 4.5V to 5.5V, the CA-IS3115AW devices provide a fixed output voltage of 3.3V, 3.7V, 5V or 5.4V set by pin SEL. 3.7V and 5.4V output options provide headroom voltage to power an LDO. Only output, input bypass capacitors, and a pull-up resistor for 3.7V or 5.4V outputs are needed to finish the design.

The CA-IS3115AW devices feature a unique control scheme, which can quickly respond to load transient and accurately regulate the output voltage. The devices are capable of delivering a load up to 1.5W output power and offering soft-start, current limit, short-circuit protection and thermal shutdown protection features to better enhance the reliability of the system. The CA-IS3115AW devices include an enable input pin (EN). Connect the EN pin to the VINP input voltage or force this pin high to turn on the DC-DC converter. Force this pin low to disable the device and enter shutdown mode. In shutdown mode, the device stops switching operation with microampere standby supply current.


The CA-IS3115AW devices are available in wide-body SOIC16 package with creepage and clearance > 8mm, and operate over -40°C to +125°C temperature range.

Device Information

Part number	Package	Package size (NOM)
CA-IS3115AW	SOIC16-WB(W)	10.30 mm × 7.50 mm

Simplified Block Diagram

4 Ordering Information

Table 4-1. Ordering Information

Part #	Output Power (W)	Isolation Rating(kV _{RMs})	Package
CA-IS3115AW	1.5	5.0	SOIC16-WB

Table of Contents

1	Feat	ures	1
2	App	lications	1
3		eral Description	
4		ering Information	
5		sion history	
6		. Configuration and Description	
7		cifications	
	7.1	Absolute Maximum Ratings ^{1, 2}	
	7.2	ESD Ratings	5
	7.3	Recommended Operating Conditions	5
	7.4	Thermal Information	5
	7.5	Power Ratings	5
	7.6	Insulation Specifications	ε
	7.7	Safety-Related Certifications	7
	7.8	Electrical Characteristics	8
	7.9	MSL	8

7.10	Typ	pical Operating Characteristics	
Deta	iled I	Description	13
8.1	Ov	erview	13
8.2	Ou	tput Voltage Selection	13
8.3	Pro	otection Functions	14
8.	3.1	UVLO and Soft-Start	14
8.	3.2	Current-limit Protection	14
8.	3.3	Thermal Shutdown	14
Appli	icatio	ons Information	15
9.1	Тур	pical Application Circuit	15
9.2	Inp	out and Output Capacitors	15
9.3	PC	B Layout Guidelines	15
Packa	age I	nformation	17
	_		
Tape	and	Reel Information	19
•			
	Detai 8.1 8.2 8.3 8. 8. Appli 9.1 9.2 9.3 Packa Solde Tape	Detailed I 8.1 Ov 8.2 Ou 8.3 Pro 8.3.1 8.3.2 8.3.3 Application 9.1 Ty 9.2 Inp 9.3 Po Package I Soldering Tape and	Detailed Description

5 Revision history

Revision Number	Description	Revised Date	Page Changed	
Preliminary Version	N/A	2023/10/17	N/A	
Version 1.00	Update isolation ratings	2023/12/01	6,7	
Version 1.01	Adds output derating curves	2024/01/03	11,12	
Version 1.02	Adds Short circuit protection function description	2024/01/09	14	
Version 1.03	Update VDE, UL, CQC, TUV information	2024/04/16	1,6,7	
VEISIOII 1.05	Update the test conditions of V _{IOSM}	2024/04/10	1,0,7	
Version 1.04	Update the test conditions of V _{ISO(LOAD)}	2024/05/14	8	
	Add Capacitor value range in VISO pin in table of section 7.3			
Version 1.05	Update the Maximum Value of I _{VINP_SC}	2024/06/19	5,8,16	
	Update Figure 9-2. Recommended Bypass Capacitors Placement			
	Update VDE information:			
	Add Maximum impulse voltage V _{IMP}			
Version 1.06	2. Update Maximum surge isolation voltage V _{IOSM}	2024/09/05	1,6,7	
	Update CQC certification standards			
	Add TUV certification information			

6 Pin Configuration and Description

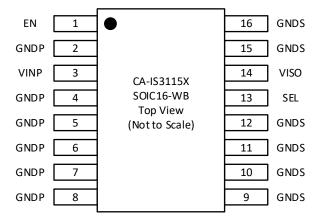


Figure 6-1. CA-IS3115AW Top View

Table 6-1. CA-IS3115AW Pin Description

Pin name	Pin number	Туре	Description
EN	1	Input	Enable input, active-high. Force this pin high to enable the device. Force this
EIN	EN 1		pin low to disable the device and put the device into shutdown mode.
VIND	VINP 3		Primary side supply input. Connect VINP to GNDP with both $0.1\mu F$ and $10\mu F$
VIINE			capacitors as close to the device(pin 3 and pin 4) as possible.
GNDP	2, 4, 5, 6, 7, 8	2, 4, 5, 6, 7, 8 GND Primary side local ground.	
GNDS	9, 10, 11, 12, 15, 16	GND	Secondary side ground return connection for V _{ISO} .
			Output voltage V _{ISO} select pin:
	13		V _{ISO} = 5.0 V when SEL is shorted to VISO;
SEL		Innut	V_{ISO} = 5.4 V when SEL is connected to VISO through a 100k Ω resistor;
SEL	15	Input	V _{ISO} = 3.3 V when SEL is shorted to GNDS;
			V_{ISO} = 3.7V when SEL is connected to GNDS through a 100k Ω resistor.
			Don't leave SEL pin open.
VISO	1.4	Power	Isolated supply voltage pin. Connnect VISO to GNDS with both 0.1µF and
VISO	14	Power	10μF capacitors as close to the device(pin 14 and pin 15) as possible.

Shanghai Chipanalog Microelectronics Co., Ltd. 7 Specifications

7.1 Absolute Maximum Ratings^{1, 2}

	Parameters	Minimum value	Maximum value	Unit
V _{INP}	Power supply voltage	-0.5	6.0	V
V _{ISO}	Isolated supply voltage	-0.5	6.0	V
EN	EN input voltage	-0.5	V _{INP} +0.3 ³	V
SEL	SEL input voltage	-0.5	V _{ISO} +0.3 ³	V
T _J	Junction temperature	-40	150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values are with respect to the local ground (GNDP or GNDS) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6 V.

7.2 ESD Ratings

		Value	Unit
V Floring that a displacement	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±3000	V
V _{ESD} Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000	V

Notes:

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V CDM allows safe manufacturing of standard ESD control process.

7.3 Recommended Operating Conditions

	Parameters	Minimum value	Typical value	Maximum value	Unit
V _{INP}	Power supply voltage	4.5	5	5.5	V
V _{EN}	EN input voltage	0		5.5	V
V _{ISO}	Isolated supply voltage	0		5.7	V
V _{SEL}	SEL input voltage	0		5.7	V
C _{VISO}	Capacitor value range in VISO pin	4.7	10	1000	μF
T _A	Ambient Temperature	-40		125	°C
TJ	Junction temperature	-40		150	°C

7.4 Thermal Information

	Thousand Matria	CA-IS3115AW	Unit
Thermal Metric		SOIC16-WB(W)	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	68	°C/W
R _{θJC}	Junction-to-case thermal resistance	18	

7.5 Power Ratings

	Parameters	Test Conditions	Minimum value	Typical value	Maximum value	Unit
P_{D}	Power dissipation	V_{INP} = 5.5V, V_{ISO} = 5.4V, 300mA output current			3	W

CHIPANALOG

7.6 Insulation Specifications

	PARAMETR	TEST CONDITIONS	VALUE	UNIT	
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mm	
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	8	mm	
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm	
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	> 600	V	
	Material group	According to IEC 60664-1	I		
		Rated mains voltage ≤ 300V _{RMS}	I-IV		
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600V _{RMS}	I-IV		
	5 5 7.	Rated mains voltage ≤ 1000V _{RMS}	I-III		
DIN EN IE	C 60747-17 (VDE 0884-17) ²	S AMO			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	2121	V _{PK}	
		AC voltage; Time dependent dielectric breakdown (TDDB)	1500	V _{RMS}	
V_{IOWM}	Maximum working isolation voltage	Test			
		DC voltage	2121	V _{DC}	
V_{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60s (qualification); V _{TEST} = 1.2 × V _{IOTM} , t= 1s (100% production)	7070	V _{PK}	
V _{IMP}	Maximum impulse voltage	1.2/50-µs waveform per IEC 62368-1	9846	V _{PK}	
V _{IOSM}	Maximum surge isolation voltage ³	V _{IOSM} ≥ 1.3 x V _{IMP} ; Tested in oil (qualification test), 1.2/50-μs waveform per IEC 62368-1	12800	V _{PK}	
		Method a, After input/output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10s$	≤5		
q_{pd}	Apparent charge⁴	Method a, After environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10s$	≤5	pC	
		Method b1, At routine test (100% production) and preconditioning (type test) $V_{\text{ini}} = 1.2 \times V_{\text{IOTM}}, t_{\text{ini}} = 1s;$ $V_{\text{pd(m)}} = 1.875 \times V_{\text{IORM}}, t_{\text{m}} = 1s$	≤5		
C _{IO}	Barrier capacitance, input to output ⁵	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1MHz$	3.5	pF	
· · ·		V _{IO} = 500V, T _A = 25°C	> 1012	<u> </u>	
R_{IO}	Isolation resistance ⁵	$V_{1O} = 500V, 100^{\circ}C \le T_{A} \le 125^{\circ}C$	> 10 ¹¹	Ω	
		V _{IO} = 500V at T _S = 150°C	> 109		
	Pollution degree		2		
UL 1577	<u> </u>	<u> </u>		Ī	
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60s (qualification), $V_{TEST} = 1.2 \times V_{ISO}$, t = 1s (100% production)	5000	V _{RMS}	

NOTE:

- 1. Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- 4. Apparent charge is electrical discharge caused by a partial discharge (pd).
- 5. All pins on each side of the barrier tied together creating a two-terminal device.

Shanghai Chipanalog Microelectronics Co., Ltd.

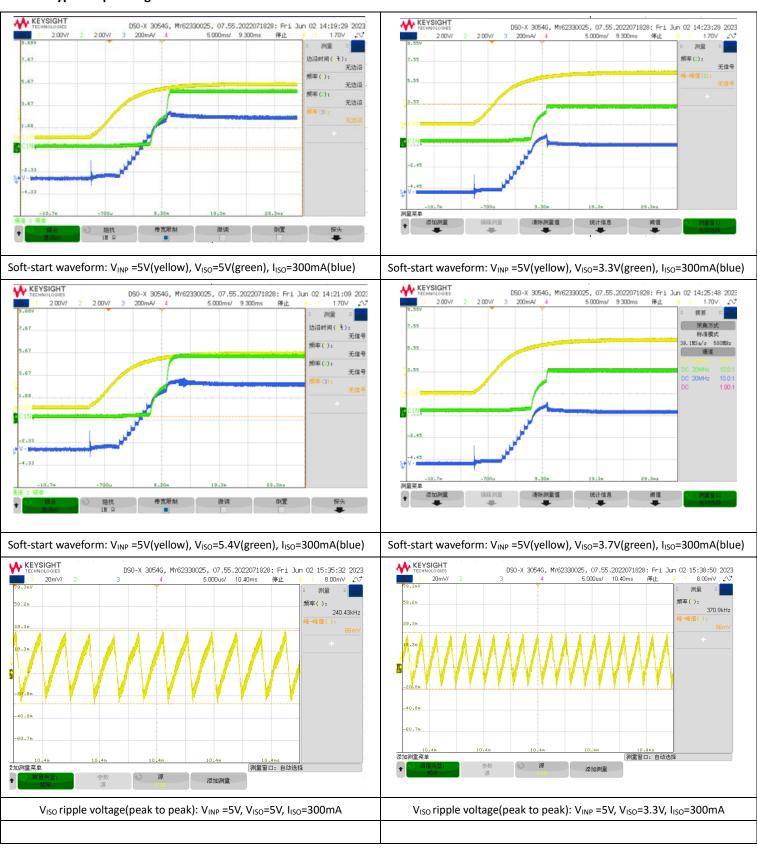
7.7 Safety-Related Certifications

VDE	UL	CQC	TUV (Pending)		
Certified according to DIN EN IEC	Certified according to UL 1577	Certified according to	Certified according to EN 61010-1		
60747-17(VDE 0884-17):2021-10;	Component Recognition	GB4943.1-2022	and EN 62368-1		
EN IEC 60747-17:2020+AC:2021	Program				
VIORM: 2121VPK	Single protection:	Reinforced isolation	EN 61010-1		
VIОТМ: 7070VРК	5000V _{RMS}	(Altitude ≤ 5000m)	5000V _{RMS}		
VIOSM: 12800VPK					
			EN 62368-1		
			5000V _{RMS}		
Certification number:	Certification number:	Certification number:	Certification number		
40057278 (reinforced isolation)	E511334	CQC23001406424	EN 61010-1: pending		
			EN 62368-1: pending		

7.8 Electrical Characteristics

Over operating temperature range T_A = -40 to 125°C, V_{INP} = 4.5V to 5.5V, SEL connected to V_{ISO} , C_{VINP} = C_{VISO} = 10 μ F, unless otherwise specified. All typical specs are at T_A = 25°C and V_{INP} = 5V.

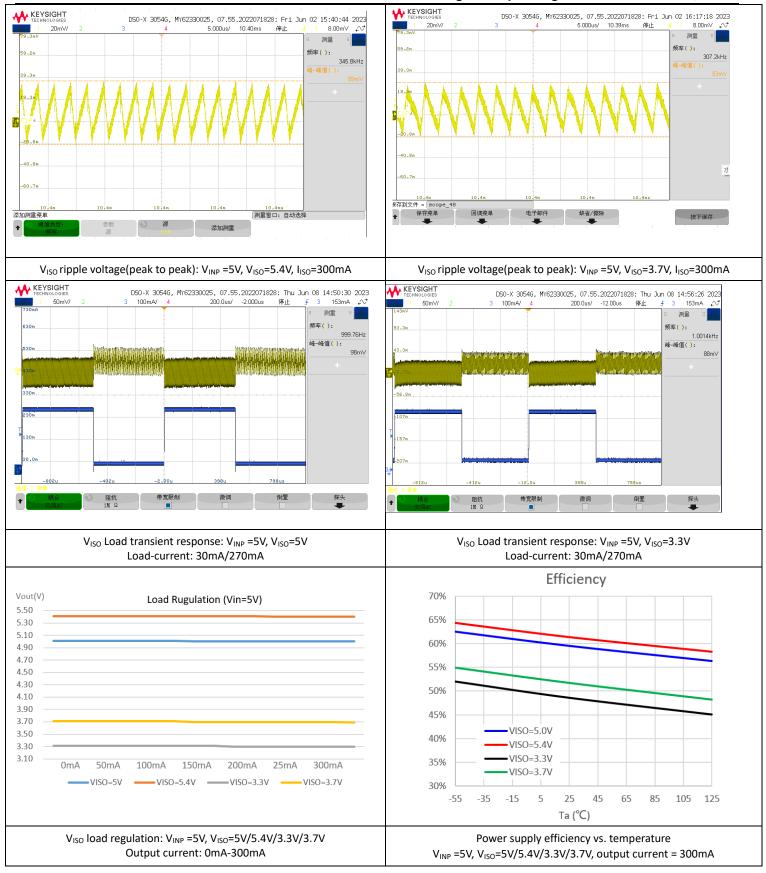
	Parameters	Test Conditions	Minimum value	ТҮР	Maximum value	Unit	
Power Sup	ply Input						
I _{VINP_SD} V _{INP}	shutdown current	EN = LOW		0.5	30	μΑ	
		EN = HIGH, SEL connected to V _{ISO} (5V output)		4.9	20	mA	
I _{VINP_O}	V _{INP} quiescent current	EN = HIGH, SEL 100kΩ to VISO (5.4Voutput)		5.2	20	mA	
_	I _{OUT} = 0% load	EN = HIGH, SEL connected to GNDS (3.3V output)		4.1	20	mA	
		EN = HIGH, SEL 100kΩ to GNDS (3.7V output)		4.3	20	mA	
I _{VINP_SC} [DC current from VINP supply under short circuit on VISO	VISO short to GNDS		77	125	mA	
V _{UVLO+}	Input undervoltage lockout rising threshold			2.7	3	V	
V _{UVLO} -	Input undervoltage lockout falling threshold		2.1	2.3		V	
V _{HYS(UVLO)}	Input undervoltage lockout hysteresis			0.4	0.6	V	
EN, SEL pir	ns						
V _{IH_EN}	EN Input threshold, logic HIGH		0.7V _{INP}			V	
V _{IL_EN}	EN Input threshold, logic LOW				0.3V _{INP}	V	
I _{EN}	Input leakage current	$V_{INP} = 5V$, $V_{EN} = 5V$		10	20	μΑ	
Isolated D	C-DC Converter		•				
		SEL connected to V _{ISO} (5V output), I _{ISO} = 150mA	4.75	5.0	5.25		
.,	Isolated output voltage	SEL 100KΩ to VISO (5.4V output), I _{ISO} = 150mA	5.13	5.4	5.67	l	
V_{ISO}		SEL connected to GNDS (3.3V output), I _{ISO} = 200mA	3.13	3.3	3.47	V	
		SEL 100KΩ to GNDS (3.7V output), I _{ISO} = 200mA	3.51	3.7	3.89	1	
		SEL connected to V _{ISO} (5V output)	240	300			
		SEL 100KΩ to VISO (5.4V output)	240	300		1 .	
ILOAD_MAX	Maximum load currrent	SEL connected to GNDS (3.3V output)	320	400		mA	
		SEL 100KΩ to GNDS (3.7V output)	320	400			
		20MHz bandwidth, SEL short to VISO (5V input, 5V or					
$VISO_{(RIP)}$	Voltage ripple on isolated supply output (pk-pk)	5.4V output),I _{ISO} = 150mA		65			
		20MHz bandwidth, SEL short to GNDS (5V input, 3.3V or		55		mV	
		3.7V output), I _{ISO} = 200mA		33			
		SEL short to VISO (5V or 5.4V output), I _{ISO} = 150mA,		4	20		
VISO(LINE)	Line regulation	V _{INP} = 4.5V to 5.5 V			20	mV/V	
· · · · · (LINE)		SEL short to GNDS (3.3V or 3.7V output), I _{ISO} = 200mA,		4	20	,	
		V _{INP} = 4.5V to 5.5V					
		SEL short to VISO (5V input, 5V or 5.4V output), I _{ISO} = 0 to		0.5%	2%	1	
VISO(LOAD)	Load regulation	240mA		0.50/	20/	-	
		SEL short to GNDS (5V input, 3.3V or 3.7V output), I _{ISO} = 0 to 320mA		0.5%	2%		
		$I_{ISO} = 300 \text{ mA}, C_{LOAD} = 0.1 \mu\text{F} \mid 10 \mu\text{F}; V_{ISO} = 5 \text{V}, 5.4 \text{V}$		60%		-	
EFF	Efficiency@maximum load current	$I_{ISO} = 300$ mA, $C_{LOAD} = 0.1\mu$ F 10μ F, $V_{ISO} = 3.3V$, $3.7V$		50%		1	
CMTI Common mode transient immunities		Slew Rate of GNDP versus GNDS, V _{CM} =1200V _{RMS}	±150	JU/0		kV/μs	
CMTI Common-mode transient immunity		·	-130	1			
t _{RISE}	V _{ISO} rise time	10% to 90%, V _{ISO} =3.3V, 3.7V, 5.0V, 5.4V				ms mV	
	voltage (peak to peak)	10% to 90% load step with 10mA/µs slew-rate; VISO		100		mV	
v _{iso} load tr	ansient response	ripple voltage difference at two loads		5		μs	


7.9 MSL

Parameters		Standard	Level		
	MSL	IPC/JEDEC J-STD-020D.1	MSL 3		

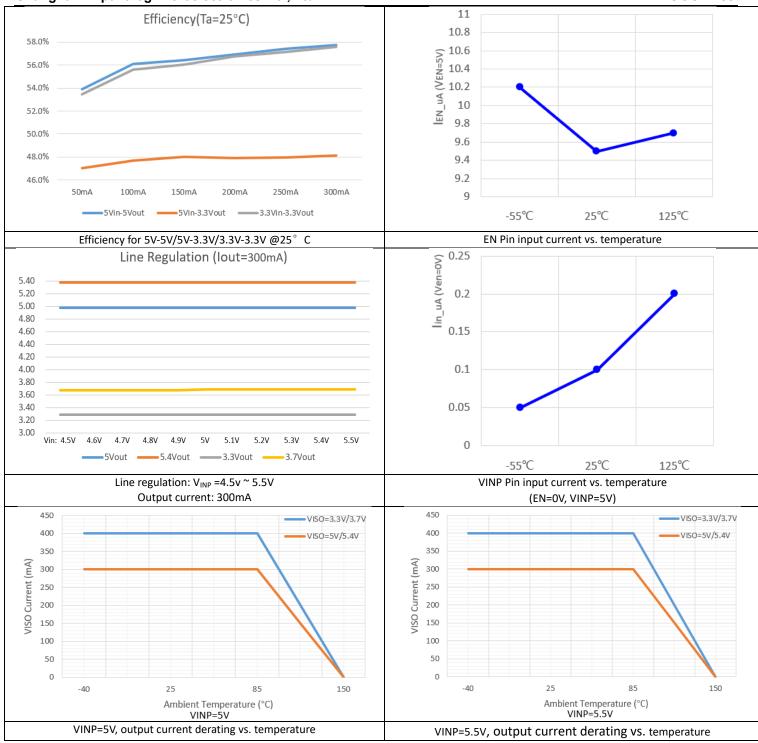
Shanghai Chipanalog Microelectronics Co., Ltd.

7.10 Typical Operating Characteristics

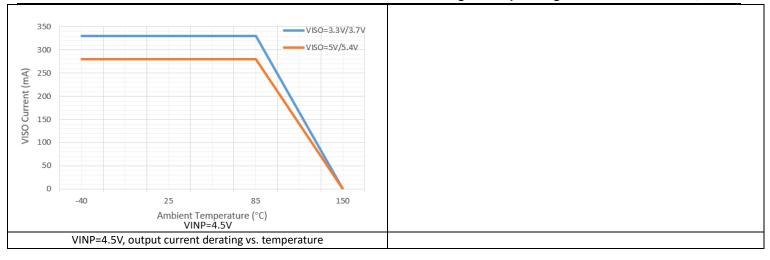


CA-IS3115AW

Version 1.06


CHIPANALOG

Shanghai Chipanalog Microelectronics Co., Ltd.


Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.06

CA-IS3115AW

Shanghai Chipanalog Microelectronics Co., Ltd.

8 Detailed Description

8.1 Overview

The CA-IS3115AW is a family of complete isolated DC-DC converters designed to provide isolated power with up to 1.5W output power across a 5kV_{RMS} isolation barrier. The devices operate over 4.5V to 5.5V input voltage range and use a proprietary control mechanism. The input supply V_{INP} is provided to the primary power controller that switches the power stage connected to the integrated transformer. Power is transferred to the secondary side and regulated to a fixed output voltage set by the SEL pin. The soft-start feature allows to reduce input inrush current and avoid output overshoot. These devices also incorporate an output enable (EN) control and undervoltage lockout(UVLO) function that allows the user to turn on the part at the desired input-voltage level. Figure 8-1 shows the CA-IS3115AW's functional block diagram. Connect the EN pin to VINP or force this pin high to turn on the DC-DC converter. Force this pin low to disable the device and enter low-current shutdown mode. These devices offer a ready-made, reliable, easy-to-use solution and allow users save PCB space and reduce design time for the popular 5V, 3.3V power supply systems.

These devices are provided with a robust overcurrent protection scheme that protects the devices under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the switching operation and triggers hiccup mode. Once the hiccup timeout period expires, soft-start is attempted again. Hiccup mode operation ensures low power dissipation under output short-circuit conditions.

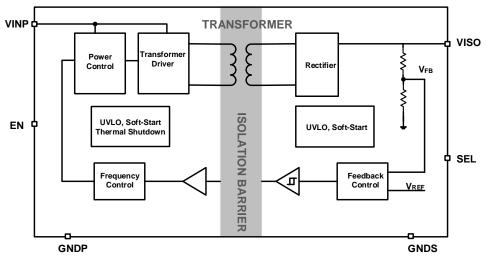


Figure 8-1. Functional Block Diagrams

8.2 Output Voltage Selection

At startup, the CA-IS3115AW monitors the state of pin SEL after applying V_{INP} supply voltage above the UVLO rising threshold or enabling via the EN pin, to build the desired regulation voltage level for the V_{ISO} output. See Table 8-1 for the output voltage selection.

EN	SEL	VISO		
High	Sorted to VISO	5V		
High	100kΩ to VISO	5.4V		
High	Shorted to GNDS	3.3V		
High	100KΩ to GNDS	3.7V		
High	OPEN	Unsupported		
Low	X	0V		

Table 8-1. VISO Output Voltage Selection

Note: Don't leave SEL pin open.

8.3 Protection Functions

8.3.1 UVLO and Soft-Start

The CA-IS3115AW undervoltage lockout (UVLO) on both V_{INP} power supply and V_{ISO} isolated supply. Upon power-up, the primary side transformer driver is disabled while the V_{INP} voltage is below the threshold voltage $V_{UVLO+}(2.7V, typ.)$, and V_{ISO} output is off. The output powers up once the threshold is met. This allows the user to turn on the part at stable input-voltage level.

For many applications, it is necessary to minimize the inrush current at start-up. The CA-IS3115AW devices built-in soft-start circuit significantly reduces the start-up current spike and output voltage overshoot. Once input power supply is applied at VINP pin, the internal soft-start circuit will control the power delivered to the output gradually increase, allowing for a graceful turn-on ramp.

8.3.2 Current-limit Protection

The CA-IS3115AW devices are provided with an over-current protection scheme that protects the device under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the switching operation and triggers a hiccup mode whenever the switch current exceeds the internal current limit. Once the hiccup timeout period expires, soft-start is attempted again. The hiccup condition is cleared when the over-current is removed.

8.3.3 Thermal Shutdown

Thermal-shutdown protection limits total power dissipation in the device. When the junction temperature of the device exceeds $175^{\circ}C(T_{SD})$, an on-chip thermal sensor shuts down the device, allowing the device to cool. The thermal sensor turns the device on again after the junction temperature cools and junction temperature drops to normal operation temperature range (< $150^{\circ}C$) of the device.

9 Applications Information

9.1 Typical Application Circuit

The CA-IS3115AW devices are high-integration isolated power supply solution. Included in the package are the switching controller, power switches, transformer, and all support components. Only output and input bypass capacitors are needed to finish the design. For the applications with LDO post regulator, it needs a single $100k\Omega$ external resistor to set the output level to 3.7V or 5.4V, see Figure 9-1 typical application circuit.

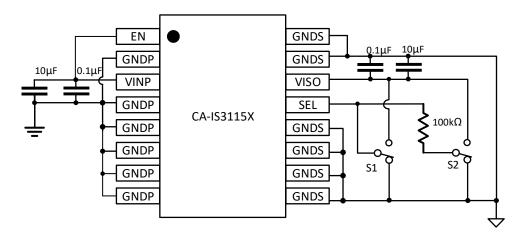


Figure 9-1. CA-IS3115AW Typical Application Circuit

9.2 Input and Output Capacitors

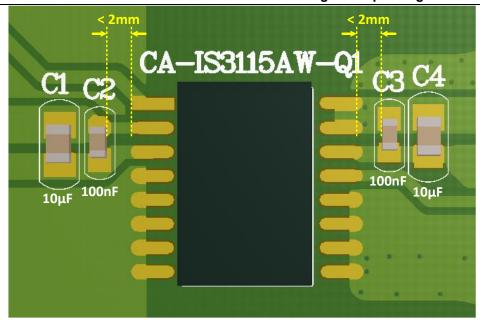
The input capacitors (between VINP and GNDP) are required to reduce the peak current drawn from input power source and reduce the switching noise, increase efficiency. For the input capacitors, choose the ceramic capacitor because they have the lowest equivalent series resistance (ESR), smallest size, and lowest cost. For most applications, we recommend to use at least $0.1\mu\text{F}$ and $10\mu\text{F}$ ceramic capacitors with X5R or X7R temperature characteristic.

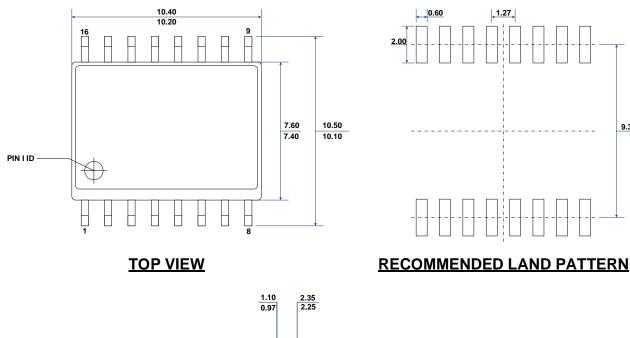
The output capacitors between VISO and GNDS are required as well to keep the output voltage ripple small and to ensure loop stability. These bypass capacitors must have low impedance at the switching frequency. Ceramic capacitors are recommended due to their small size and low ESR. Make sure the capacitors do not degrade their capacitance significantly over temperature and DC bias. It is recommended to have at least $10\mu F$ of effective capacitance at output.

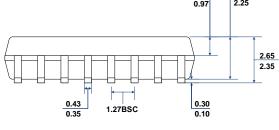
9.3 PCB Layout Guidelines

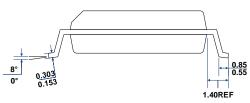
High switching frequencies and large peak currents make PCB layout a very important part of the isolated DC-DC converter design. Good PCB design minimizes excessive electromagnetic interference (EMI) and voltage gradients in the ground plane to avoid instability and regulation errors. Even with the high level of integration, like CA-IS3115AW, users may fail to achieve specified operation with a haphazard or poor layout. So careful PCB layout is critical to achieve clean and stable operation, and ensure that the grounding and heat sinking are acceptable.

Place the input capacitors, output capacitors, and the CA-IS3115AW IC on the same PCB layer. Place decoupling capacitors as close as possible to the CA-IS3115AW device pins, see Figure 9-2 recommended components placement for the PCB layout. The paths must be wide and short to minimize inductance, also any via holes must be avoided on these paths. Connect all of the ground (GNDP, GNDS) connections to as large a plane area as possible for best heat-sinking. To ensure isolation performance between the primary side and secondary side, on the top layer and bottom layer keep the space under the CA-IS3115AW device free from traces, vias, and pads to maintain maximum creepage distance (≥ 8mm).




Figure 9-2. Recommended Bypass Capacitors Placement


9.30


10 Package Information

The following figure illustrates the size drawing and recommended pad size of SOIC16-WB wide-body package for the CA-IS3115AW isolated DC-DC converter. All dimensions are in millimeters.

FRONT VIEW

LEFT-SIDE VIEW

11 Soldering Temperature (reflow) Profile

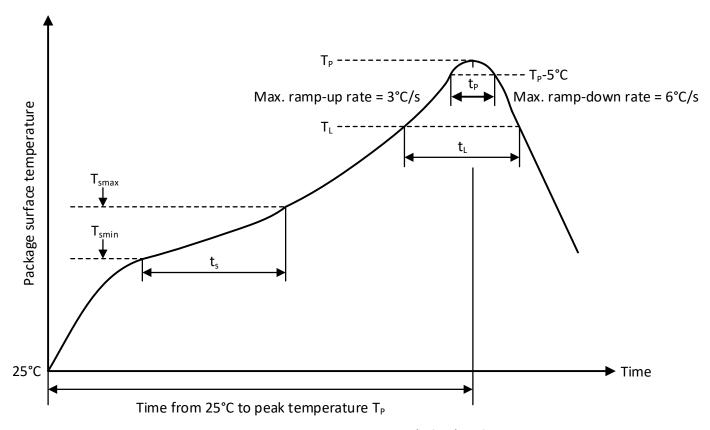
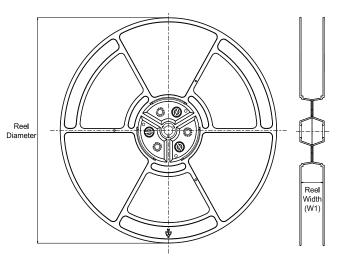
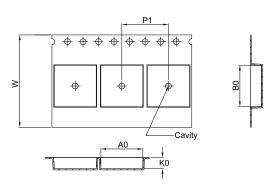


Figure 11-1. Soldering Temperature (reflow) Profile

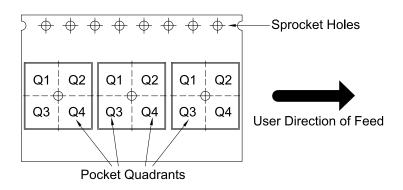

Table 11-1. Soldering Temperature Parameter

Profile Feature	Pb-Free Soldering
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max
Time t_s of preheat temp ($T_{smin} = 150$ °C to $T_{smax} = 200$ °C)	60~120 seconds
Time t _L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to $T_L = 217$ °C)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max



12 Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width						
В0	Dimension designed to accommodate the component length						
K0	Dimension designed to accommodate the component thickness						
W	Overall width of the carrier tape						
P1	Pitch between successive cavity centers						

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3115AW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1

13 Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com