

CA-IF43232E 3V to 5.5V Two-Channel RS-232 Transceiver With ±15kV ESD Protection

1 Key Features

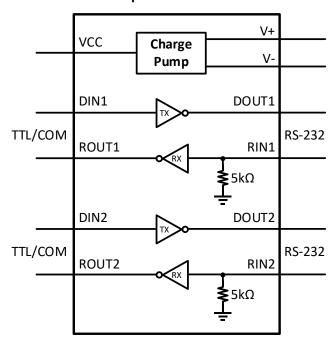
- Meets or Exceeds the Requirements of the TIA/ EIA-232-F and ITU V.28 Standards
- Bus Pins (RINx and DOUTx) ESD Protection
 - ±15kV HBM ESD
 - ±8kV IEC 61000-4-2 Contact Discharge
 - ±15kV IEC 61000-4-2 Air-gap Discharge
- Operates With 3-V to 5.5-V VCC Supply
- Two Drivers and Two Receivers
- Maximum Data Rate: 250kbps
- Low Supply Current: 1mA (typical)
- Two Charge Pumps With External Capacitors: 4 × 0.1μF (VCC = 3.3V)
- Accepts 5-V Logic Input With 3.3-V Supply
- Extended Industrial Temperature Range: –40°C to 125°C

2 Applications

- Wired Networking
- Data center and Enterprise Computing
- Battery-Powered Systems
- Computer
- Printer

3 Description

The CA-IF43232E device consists of two line drivers, two line receivers, and a dual charge-pump circuit, which meets the requirements of the TIA/EIA-232-F and ITU V.28 standards and provides the electrical interface between an asynchronous communication controller and the serial-port connector. These devices have internal charge pumps with external capacitors could operate with 3-V to 5.5-V VCC supply. The CA-IF43232E devices operate at data signaling


rates up to 250kbps and a maximum of $30\text{-V}/\mu\text{s}$ driver output (DOUT1/DOUT2) slew rate.

These devices could provide standard narrow-body SOIC16 and small-footprint TSSOP16 packages, and are specified over extended industrial temperature range of -40°C to 125°C.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CA-IF43232EN	SOIC16-NB (N)	10.0mm × 3.9mm
CA-IF43232ETB	TSSOP16 (TB)	5mm × 4.4mm

Simplified Schematic

Version 1.01

4 Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Part Number	Number of Channels	Date Rate (kbps)	Package
CA-IF43232EN	2	250	SOIC16-NB (N)
CA-IF43232ETB	2	250	TSSOP16 (TB)

Table of Contents

1	Key Fe	eatures1		7.6	Timing Characteristics	7
2	Applic	ations1	8	Para	ameter Measurement Information	8
3	Descri	ption1	9	Deta	ailed Description	9
4	Orderi	ing Guide2		9.1	Device Feature Description	9
5		on History3		9.2	Device Function Mode	9
6		escriptions and Functions4	10		Application and Implementation	10
7		ications5	11		Package Information	11
-	7.1	Absolute Maximum Ratings ¹ 5		11.1	SOIC16-NB Package	11
	7.2	ESD Ratings5		11.2	TSSOP16 Package	12
	7.3	Recommended Operating Conditions5	12		Soldering Information	13
	7.4	Thermal Information5	13		Tape and Reel Information	14
	7.5	Electrical Characteristics6	14		Important Notice	15

5 Revision History

Revision	Description	Date	Page
Version 1.01	First English edition.	2024/12/06	All

6 Pin Descriptions and Functions

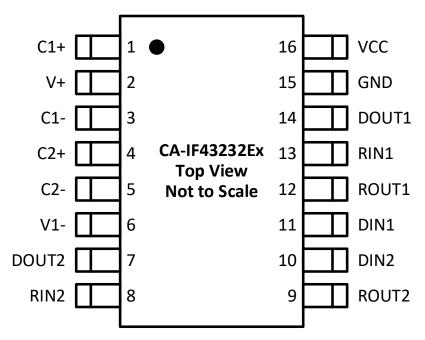


Figure 6-1 Pin Configuration

Table 6-1 Pin Description and Functions

NAME	PIN NUMBER	ТҮРЕ	DESCRIPTION
C1+	1	Input/Output	Positive lead of C1 capacitor
V+	2	Output	Positive charge pump output for storage capacitor only
C1-	3	Input/Output	Negative lead of C1 capacitor
C2+	4	Input/Output	Positive lead of C2 capacitor
C2-	5	Input/Output	Negative lead of C2 capacitor
V-	6	Output	Negative charge pump output for storage capacitor only
DOUT2	7	Output	Second RS-232 line data output, cable side
RIN2	8	Input	Second RS-232 line data input, cable side
ROUT2	9	Output	Second logic data output, logical side
DIN2	10	Input	Second logic data input, logical side
DIN1	11	Input	First logic data input, logical side
ROUT1	12	Output	First logic data output, logical side
RIN1	13	Input	First RS-232 line data input, cable side
DOUT1	14	Output	First RS-232 line data output, cable side
GND	15	Ground	Ground
VCC	16	Supply	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings¹

	PARAMETER				UNIT
VCC	Supply voltage ²		-0.3	6	V
V+	Positive charge pump output supp	oly voltage ²	-0.3	7	V
V+	Negative charge pump output sup	pply voltage ²	0.3	-7	V
(V+) -(V-)	Supply voltage difference ²	Supply voltage difference ²		13	V
V	Input valtage	DIN1, DIN2	-0.3	6	V
Vı	Input voltage	RIN1, RIN2	-25	25	V
V	Output valtage	DOUT1, DOUT2	-13.2	13.2	V
Vo	Output voltage	ROUT1, ROUT2	-0.3	V _{CC} + 0.3	
Tj	Junction Temperature	Junction Temperature		150	°C
T _{STG}	Storage Temperature	Storage Temperature		150	°C

NOTE:

2. All voltage values are with respect to the ground terminal (GND).

7.2 ESD Ratings

			VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-	Bus pins (RINx, DOUTx)	±15	
	001	All other pins	±2	kV
V _{ESD} Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins		±1.5	
	Contact discharge, per IEC 61000-4-2	Bus pins (RINx, DOUTx ^{1, 2})	±8	kV
	Air-gap discharge, per IEC 61000-4-2	bus pilis (NINX, DOUTX ^{2, 2})	±15	ΚV

NOTE:

- 1. Minimum of 1-μF capacitor between VCC and GND is required to meet the specified IEC 61000-4-2 rating.
- 2. Place 150-pF capacitor between DOUTx and GND to meet the specified IEC 61000-4-2 rating.

7.3 Recommended Operating Conditions

	PARAMETER		MIN	NOM	MAX	UNIT
VCC Complementary with respect to CND		VCC = 3.3V	3.0	3.3	3.6	V
VCC	VCC Supply voltage, with respect to GND		4.5	5.0	5.5] v
Vi	Input voltage of RINx		-25		25	V
1/t _{UI}	Data Rate				250	kbps
T _A	Ambient Temperature		-40		125	°C
Tı	Junction Temperature		-40		150	°C

7.4 Thermal Information

	THERMAL METRIC		PACKAGE		
			TSSOP16 (TB)	UNIT	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	96.2	115	°C/W	

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only
and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Electrical Characteristics

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply						
I _{CC}	Supply current ¹	No load, VCC = 3.3V or 5V		1	2	mA
Driver						
V _{IH}	High-level input voltage on DINx	VCC = 3.3V	2		5.5	V
V _{IL}	Low-level input voltage on DINx	VCC - 5.5V	0		0.8	V
V _{IH}	High-level input voltage on DINx	VCC = 5V	2.4		5.5	V
V _{IL}	Low-level input voltage on DINx	7 VCC - 3V	0		0.8	V
I _{IH}	High-level input current on DINx	DINx = VCC		±0.01	±1	μΑ
I _{IL}	Low-level input current on DINx	DINx = GND		±0.01	±1	μΑ
V _{OH}	High-level output voltage on DOUTx	DOUT at $R_L = 3k\Omega$ to GND, DINx = GND	5	5.4		V
V _{OL}	Low-level output voltage on DOUTx	DOUT at $R_L = 3k\Omega$ to GND, DINx = VCC	-5	-5.4		V
	Short-circuit output current on	VCC = 3.6V, DOUTx connects to GND		+35	±60	A
los	DOUTx	VCC = 5.5V, DOUTx connects to GND		±35	IOU	mA
Ro	Output resistance on DOUTx	$VCC = V + = V - = 0V, V_0 = \pm 2V$	300	3M		Ω
Receiver	•					
V _{OH}	High-level output voltage on ROUTx	I _{OH} = -1mA	VCC - 0.6	VCC- 0.1		V
V _{OL}	Low-level output voltage on ROUTx	I _{OL} = 1.6mA		0.15	0.4	V
.,	Input threshold high voltage on	VCC = 3.3V		1.6	2.2	V
V _{IH}	RINx	VCC = 5V		1.9	2.4	V
.,	Input threshold low voltage on	VCC = 3.3V	0.6	1.1		V
V _{IL}	RINx	VCC = 5V	0.8	1.4		V
V _{hys}	Input hysteresis (V _{IH} – V _{IL}) on RINx			0.5		V
Rı	Intput resistance on RINx	$V_1 = \pm 3V \text{ to } \pm 25V$	3	5	7	kΩ

Test conditions refer to the recommended configuration of charge pump capacitors in Application and Implementation.

7.6 Timing Characteristics

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25$ °C and $V_{CC} = 5V$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Driver						
Driver propagation delay time,		$R_L = 7k\Omega$, $C_L = 150pF$, VCC = 3.3V, see Figure 8-1		380		200
t _{DPLH}	low- to high-level output	$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		680		ns
Driver propagation delay time,		$R_L = 7k\Omega$, $C_L = 150pF$, VCC = 3.3V, see Figure 8-1		620		200
t _{DPHL}	high- to low-level output	$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		1080		- ns
t _{sk(p)}	Driver pulse skew, $ t_{DPLH} - t_{DPLH} ^1$	$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		400		ns
	Driver output slew rate	R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF, VCC = 3.3V, see Figure 8-2	6	12	30	Wus
SR(t _f /t _r)		R_L = 3kΩ to 7kΩ, C_L = 150pF to 2500pF, VCC = 3.3V, see Figure 8-2	4	7	30	- V/μs
Receiver						
t _{RPLH}	Receiver propagation delay time, low- to high-level output			150		ns
t _{RPHL}	Receiver propagation delay time, high- to low-level output	C _L = 150pF, see Figure 8-3		150		ns
t _{sk(p)}	Receiver pulse skew, $ t_{RPLH} - t_{RPLH} ^1$]		5		ns
NOTE: 1. For e	ach channel of the same device.					_

8 Parameter Measurement Information

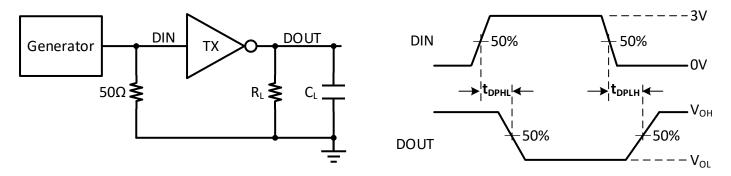


Figure 8-1 Measurement of Driver Propagation Delay

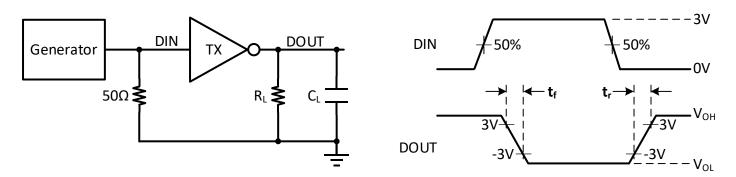


Figure 8-2 Measurement of Driver Output Rise/Fall Time

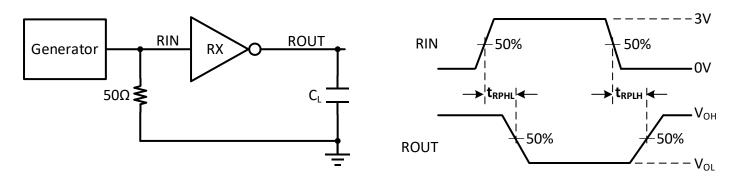


Figure 8-3 Measurement of Receiver Propagation Delay

NOTE:

- 1. The input pulse is supplied by a generator with characteristics: $PRR \le 250 \text{kbps}$, 50% duty cycle, $tr \le 10 \text{ns}$, $tf \le 10 \text{ns}$. Since the output impedance of the signal generator (Zout) is 50Ω , the $50-\Omega$ resistor in the figures is used to match and is not needed in practical applications.
- 2. C_L includes probe and fixture capacitance. Since the load capacitance affects the output rise/fall time, it is a key factor in the measurement of timing characteristics.

9 Detailed Description

9.1 Device Feature Description

The CA-IF43232E device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The device consists of two line drivers, two line receivers, and a dual charge-pump circuit.

The driver of CA-IF43232E converts TTL logic levels to the electrical levels compatible with the EIA/TIA-232 standard. The driver's input DINx does not have pull-up or pull-down resistor. Please connect DINx to GND or VCC when the driver is unused. It is forbidden to leave DINx floating.

The CA-IF43232E device have two independent receivers which convert RS-232 levels to standard logic levels. The typical value of receiver's input internal pull-down resistor is $5k\Omega$, thus ROUTx is logical high when the corresponding input of RINx is floating.

9.2 Device Function Mode

The truth table of driver is shown in Table 9-1. The truth table of receiver is shown in Table 9-2.

Table 9-1 Truth Table of Driver¹

INPUT	OUTPUT			
DINx ²	DOUTx			
L	Н			
Н	L			
NOTE:				
 H = high level, L = low level. It is forbidden to leave DINx floating. 				
2. It is forbidden to leave DINx floating.				

Table 9-2 Truth Table of Receiver¹

INPUT	ОЦТРИТ
RINx ²	ROUTx
L	Н
Н	L
Open	Н

NOTE:

- 1. H = high level, L = low level, Open = input disconnected or connected driver off.
- 2. RINx is internally pulled down to GND.

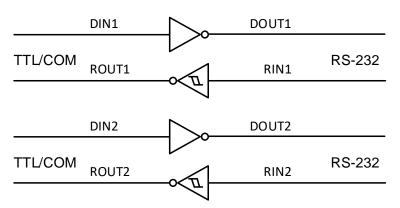


Figure 9-1 Logic Diagram of Driver and Receiver

10 Application and Implementation

ROUTx and DINx connect to logic lines from a UART or microcontroller. RINx and DOUTx connect to RS-232 connectors or cable. The typical application circuit is shown in Figure 10-1.

The CA-IF43232E has two internal charge pumps to support the level translation. The two charge pumps generate output voltages of+5.4V and –5.4V respectively when VCC ranges from 3.0V to 5.5V. Each charge pump requires a flying capacitor (C1/C2) and an energy storage capacitor (C3/C4) to generate stable V+ and V- with small ripples.

When VCC is 3.3V, the value of C1 $^{\sim}$ C4 ranges from 0.1 μ F to 1 μ F and the recommended value is 0.1 μ F. When VCC is 5V, the value of C1 ranges from 0.047 μ F to 1 μ F and the recommended value is 0.1 μ F, while the value of C2 $^{\sim}$ C4 ranges from 0.1 μ F to 2.2 μ F and the recommended value is 1 μ F.

Place the external capacitors as close to the corresponding pins as possible and keep the external capacitor traces short, specifically for C1 and C2.

The internal circuit and input threshold on DINx pin supports 5-V logic input with 3.3-V supply.

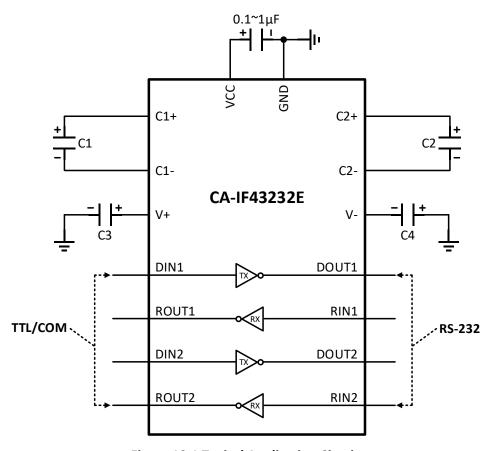
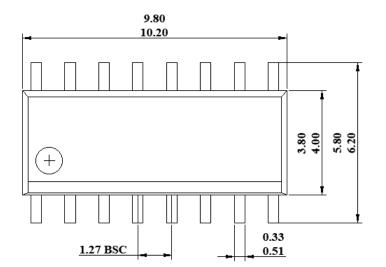
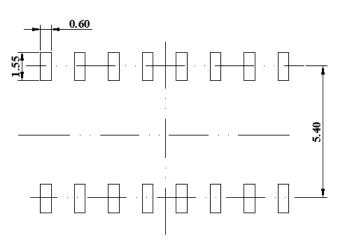


Figure 10-1 Typical Application Circuit

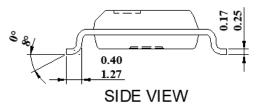
Table 10-1 Recommended Value for Charge Pump Capacitors

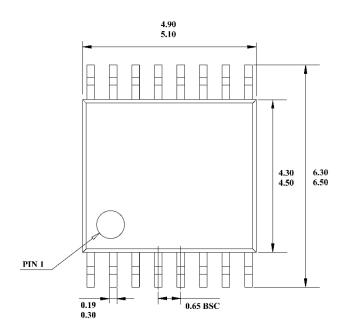

VCC	C1	C2~C4
3~3.6V	0.1μF	0.1μF
4.5~5.5V	0.1μF	1μF

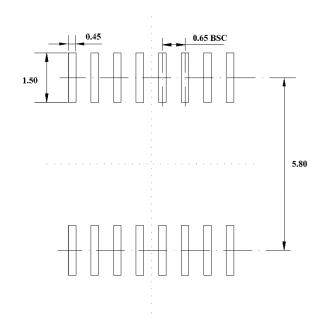


11 Package Information

11.1 SOIC16-NB Package


The values for the dimensions are shown in millimeters.


FRONT VIEW



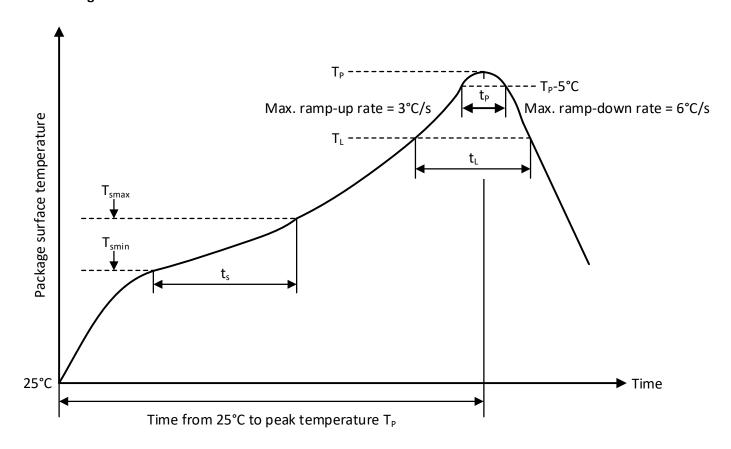
11.2 TSSOP16 Package

The values for the dimensions are shown in millimeters.

TOP VIEW

RECOMMENDED LAND PATTERN

BOTTOM VIEW

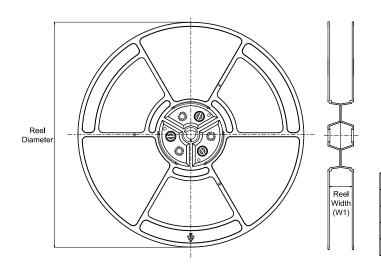


LEFT VIEW

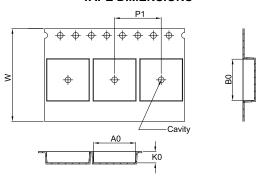
12 Soldering Information

CHIPANALOG

Figure 12-1 Soldering Temperature Curve

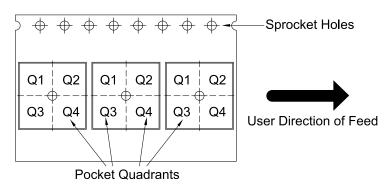

Table 12-1 Soldering Temperature Parameters

Profile Feature	Pb-Free Soldering
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max
Time t_s of preheat temp ($T_{smin} = 150$ °C to $T_{smax} = 200$ °C)	60~120 seconds
Time t _L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to T_L = 217°C)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max



13 Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IF43232EN	SOIC	N	16	2500	330	16.4	6.4	10.3	2.1	8.0	16.0	Q1
CA-IF43232ETB	TSSOP	TB	16	4000	330	12.4	6.8	5.4	1.5	8.0	12.0	Q1

14 Important Notice

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. ®, Chipanalog® are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com