

CS485xx 3V to 5.5V RS-485 Transceiver with ±20kV ESD Protection

1 Key Features

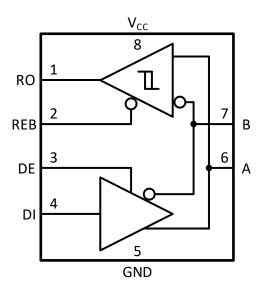
- Meets or Exceeds the Requirements of the TIA/EIA-485A Standard
- Data Rate
 - CS48505x: 500kbps
 - CS48520x: 20Mbps
- 3V to 5.5V Supply Voltage
- Differential Output Exceeds 2.1 V for PROFIBUS Compatibility with 5-V Supply
- Driver with Current Limiter and Thermal Shutdown Protection
- Bus Pins ESD Protection
 - ±20kV HBM ESD
 - ±4kV IEC 61000-4-2 Contact Discharge
- 1/2 Unit Load (Up to 64 Bus Nodes)
- Open, Short and Idle Bus Failsafe Protection
- Extended Industrial Temperature Range: -40°C to 125°C
- Common Mode Range: –7V to 12V
- Low Standby Current: <5μA
- Glitch-free during Power On and Power Off
- Support Multiple Packages: SOIC8, MSOP8 and DFN8

2 Applications

- Factory Automation & Control
- Smart Meters
- Home and Building Automation
- HVAC
- Video Surveillance
- Wireless Infrastructure

3 Description

The CS485xx is a family of half-duplex RS-485 transceivers which could be used in harsh industrial and electrical environments. The bus pins could withstand high-level ESD events to protect internal circuit without damage.


These devices could provide multiple package options including SOIC8, MSOP8 and DFN8, which are suitable for space constrained and long-cable communication applications. Each device contains one driver and one receiver, supporting the power supply range from 3V to 5.5V.

These devices are specified over ambient free-air temperature range of –40°C to 125°C.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CS48505S	SOIC8 (S)	4.9mm × 3.9mm
CS48520S	30108 (3)	4.9111111 ^ 3.9111111
CS48505M	MSOP8 (M)	3mm × 3mm
CS48520M	IVISOPO (IVI)	3111111 × 3111111
CS48505D	DFN8 (D)	3mm × 3mm
CS48520D	DENO (D)	3111111 ^ 3111111

Simplified Schematic

4 Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Part Number	Date Rate (Mbps)	Full/Half-Duplex	Package
CS48505S	0.5	Half-Duplex	SOIC8 (S)
CS48520S	20	Half-Duplex	SOIC8 (S)
CS48505M	0.5	Half-Duplex	MSOP8 (M)
CS48520M	20	Half-Duplex	MSOP8 (M)
CS48505D	0.5	Half-Duplex	DFN8 (D)
CS48520D	20	Half-Duplex	DFN8 (D)

Table of Contents

1	Key	Features	1
2	App	lications	1
3	Des	cription	1
4	Orde	ering Guide	2
5	Revi	sion History	3
6	Pin l	Descriptions and Functions	4
7	Spec	cifications	5
	7.1	Absolute Maximum Ratings ¹	5
	7.2	ESD Ratings	5
	7.3	Recommended Operating Conditions	5
	7.4	Thermal Information	5
	7.5	Electrical Characteristics	
	7.6	Timing Characteristics	7
	7.7	Typical Characteristics	8
8	Para	meter Measurement Information	11

9	Det	ailed Description	14
	9.1	System Overview	14
	9.2	Device Function Mode	14
	9	9.2.1 Driver	14
	ģ	9.2.2 Receiver	15
10		Application and Implementation	16
	10.1	Typical Application	16
	10.2	Power Supply Recommendation	16
11		Package Information	17
	11.1	SOIC8 (S) Package	17
	11.2	MSOP8 (M) Package	18
	11.3	DFN8 (D) Package	19
12		Soldering Information	20
13		Tape and Reel Information	21
14		Important Notice	22

5 Revision History

Revision	Description	Date	Page
Version 1.00	NA	2022/04/28	NA
	1. Update the maximum number of nodes supported by the bus		1
Version 1.01	to 64	2022/05/23	6
	2. Update the value of bus input current and impedance		0
	1. Update EFT items		5
Varsian 1 02	2. Add the absolute maximum rated value of the differential	2022/09/10	5
version 1.02	voltage between A and B	2023/08/10	5
	3. Add testing condition for bus input impedance R ₁		6
Version 1.02 Version 1.03	1. Add descriptions to driver enable time and receiver enable time	2024/04/29	7
	2. Modify other items to keep same with Chinese version	2024/04/29	All

6 Pin Descriptions and Functions

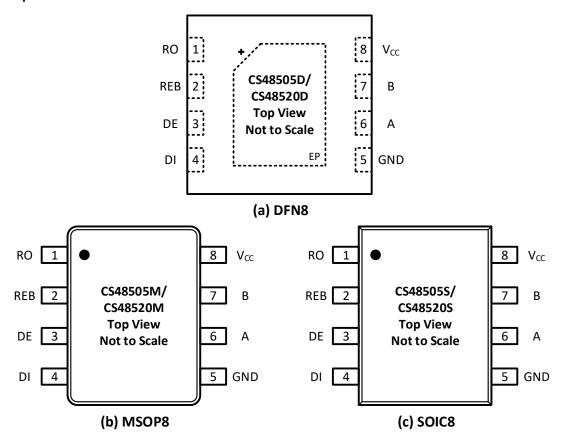


Figure 6-1 CS485xx Pin Configuration

Table 6-1 CS485xx Pin Description and Functions

NAME	PIN NUMBER	ТҮРЕ	DESCRIPTION
RO	1	Digital Output	Receiver data output.
			Receiver enable control, pulled up internally:
REB	2	Digital Input	1. When REB is low, receiver is enabled;
			2. When REB is high or open, receiver is disabled.
			Driver enable control, pulled down internally:
DE	3	Digital Input	1. When DE is high, driver is enabled;
			2. When DE is low or open, driver is disabled.
DI	4	Digital Input	Driver data input, pulled up internally.
GND	5	Ground	Ground.
Α	6	Bus Input/Output	Noninverting driver output/receiver input.
В	7	Bus Input/Output	Inverting driver output/receiver input.
V	8	Power	Power supply input, bypass V_{CC} to GND with at least $0.1 \mu F$
V _{CC}	0	rower	capacitors as close as possible to the device.
EP			Exposed Pad (DFN8 package only). Connect EP to GND.

7 Specifications

7.1 Absolute Maximum Ratings¹

	PARAMETER	MIN	MAX	UNIT
V _{CC}	Supply voltage ²	-0.5	7	V
V _{IO}	Bus voltage of A and B ²	-8	13	V
V _{IO_DIFF}	Differential voltage between A and B	-8	13	V
V _{IO}	Input logical voltage of DI, DE and REB	-0.3	$V_{CC} + 0.3^3$	V
V _{IO}	Output logical voltage of RO	-0.3	$V_{CC} + 0.3^3$	V
T _J	Junction Temperature		150	°C
T _{STG}	Storage Temperature	-65	150	°C

NOTE:

- 1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values are with respect to the ground terminal (GND) and are peak voltage values.
- 3. Maximum voltage must not exceed 7V.

7.2 ESD Ratings

			VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	Bus pins (A, B) to GND		
V Electrostatic discharge	Human body model (HBIVI), per ANSI/ESDA/JEDEC 13-001	All other pins	±8	kV
V _{ESD} Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD	22-C101, all pins	±2	
	Contact discharge, per IEC 61000-4-2	Bus pins (A, B) to GND	±4	kV
V _{EFT} Electrical fast transient	Per IEC 61000-4-4	Bus pins (A, B) to GND	±4	ΚV

7.3 Recommended Operating Conditions

	PARAMETER	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage, with respect to GND	3.0	5.0	5.5	V
V _{IN}	Bus input voltage	-7		12	V
V _{IH}	High-level input voltage of DI, DE and REB	2.0		V_{CC}	V
V _{IL}	Low-level input voltage of DI, DE and REB	0		0.8	V
R _L	Differential load resistance	54			Ω
1/t _{UI}	Data Rate: CS48505x			0.5	Mbps
1/t _{UI}	Data Rate: CS48520x			20	Mbps
T _A	Ambient Temperature	-40		125	°C
Tj	Junction Temperature	-40		150	°C

7.4 Thermal Information

	THERMAL METRIC	SOIC8 (S)	MSOP8 (M)	DFN8 (D)	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	120	160	45	°C/W

CHIPANALOG

7.5 Electrical Characteristics

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Driver						
		$R_L = 60\Omega$, $-7V \le V_{test} \le 12V$, see Figure 8-1	1.5	3.2		V
		$R_L = 60\Omega$, $-7V \le V_{test} \le 12V$, $4.5V \le Vcc$	2.4	2.2		.,
$ V_{OD} $	Differential output voltage	≤ 5.5V, see Figure 8-1	2.1	3.2		V
		$R_L = 100\Omega$, $C_L = 50$ pF, see Figure 8-2	1.8	3.6		V
		$R_L = 54\Omega$, $C_L = 50$ pF, see Figure 8-2	1.5	3.2		V
A 1 \ / 1	Change in magnitude of		F0			m)/
$\Delta V_{OD} $	differential-output voltage		– 50		50	mV
V _{oc}	Common-mode output voltage		1	V _{cc} /2	3.3	V
A)/	Change in magnitude of common-	$R_L = 100\Omega$ or 54Ω , $C_L = 50$ pF, see Figure 8-2	F0			m\/
$\Delta V_{OC(SS)}$	mode output voltage		– 50		50	mV
\/	Peak-to-peak driver common-			450		mV
$V_{OC(PP)}$	mode output voltage			430		IIIV
I _{os}	Driver short-circuit output current	DE = V_{CC} , $-7V \le V_O \le 12V$, or A shorted to B		90	150	mA
Receiver	-					
	Due in mut augment	V _I = 12V		70	600	
I _I	Bus input current	DE = 0V, V_{CC} = 0V or 5.5V $V_1 = -7V$	-100	-40		μΑ
R _I	Bus input resistance	$V_A = -7V$, $V_B = 12V^1$ or $V_A = 12V$, $V_B = -7V^1$	24			kΩ
	Positive-going receiver input			110		m\/
V_{TH+}	voltage threshold	Over V. range		-110	- 50	mV
V	Negative-going receiver input	Over V _{CM} range -200	-200	-140		mV
V_{TH-}	voltage threshold		-200	-140		IIIV
V_{HYS}^2	Receiver differential-input voltage			30		mV
V HYS	threshold hysteresis, $V_{TH+} - V_{TH-}$					IIIV
V _{OH}	High-level output voltage	$I_{OH} = -4mA$	V _{CC} – 0.5	$V_{CC} - 0.3$		V
V _{OL}	Low-level output voltage	I _{OL} = 4mA		0.2	0.4	V
I _{OZR}	High-impedance output current	REB = V_{CC} , V_O = 0V or V_{CC}	-1		1	μΑ
I _{OSR}	Receiver short-circuit output	REB = DE = 0V, see Figure 8-3			95	mA
	current	NED - DE - OV, See Figure O S				11171
Input Lo	gic (DI, DE, REB)	-				,
I _{IN}	Input Current	$0V \le V_{IN} \le V_{CC}$	- 5		5	μΑ
Supply		-				,
		Both driver and receiver enabled, REB = 0V,		950	1500	
		DE = V _{CC} , empty load, no switching			1300	
		Driver enabled and receiver disabled, REB =		550	1000	
I _{CC}	Quiescent supply current	V_{CC} , DE = V_{CC} , empty load, no switching			1000	μΑ
• • • • • • • • • • • • • • • • • • • •	Calcoche Supply Carrent	Driver disabled and receiver enabled, REB =		700	1100	μΛ
		OV, DE = OV, empty load, no switching			1100	<u>'</u>
		Both driver and receiver disabled, REB = DI			5	
		= V _{CC} , DE = 0V, empty load, no switching				
TSD	Thermal shutdown threshold			200		°C
	Thermal shutdown hysteresis			25		°C

NOTE:

^{1.} The absolute differential voltage between A and B cannot exceed the maximum rated value of 13V. Apply voltage to A and B separately during testing.

^{2.} Under any specific conditions, V_{TH+} is specified to be at least V_{HYS} higher than V_{TH-}.

7.6 Timing Characteristics

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25$ °C and $V_{CC} = 5V$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Driver						
t _r , t _f	Differential output rise and fall time	D. 540.6. 50×5 ××× 5′×××× 0.4		5	12	ns
t _{PHL} , t _{PLH}	Driver propagation delay	$R_L = 54\Omega$, $C_L = 50$ pF, see Figure 8-4		5	12	ns
t _{SK(P)}	Driver pulse skew, tphl - tplh				3.5	ns
t _{PHZ} , t _{DLZ}	Driver disable time	See Figure 8-5 and Figure 8-6		10	30	ns
	Driver enable time!	REB = 0V, see Figure 8-5 and Figure 8-6		10	30	ns
t_{PZH} , t_{PZL}	Driver enable time ¹	REB = V _{CC} , see Figure 8-5 and Figure 8-6		6	12	μs
Receiver			•			•
t _r , t _f	Receiver output rise and fall time			4	8	ns
t _{PHL} , t _{PLH}	Receiver propagation delay time	C _L = 15pF ² , see Figure 8-7		40	80	ns
t _{SK(P)}	Receiver pulse skew, t _{PHL} - t _{PLH}				4	ns
t _{PHZ} , t _{PLZ}	Receiver disable time	See Figure 8-8		7	20	ns
	Desciver analystimes	DE = V _{CC} , see Figure 8-8 and Figure 8-9		30	70	ns
t _{PZH} , t _{PZL}	Receiver enable time ³	DE = 0V, see Figure 8-8 and Figure 8-9		6	12	μs

NOTE:

- 1. When DE and REB are shorted together, driver enable time refers to the case when REB = 0V.
- 2. C_L includes probe and fixture capacitance.
- 3. When DE and REB are shorted together, receiver enable time refers to the case when DE = V_{CC} .

Typical Characteristics

All typical specifications are at $T_A = 25$ °C and $V_{CC} = 5V$ (unless otherwise noted).

Figure 7-5 Driver Common-mode Output Voltage with 54Ω Load

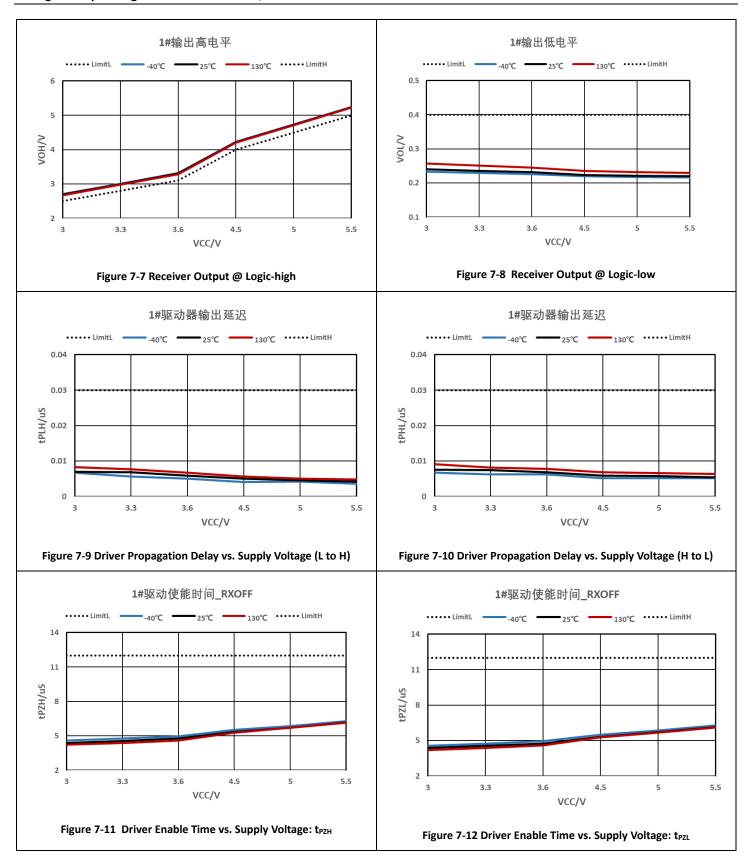
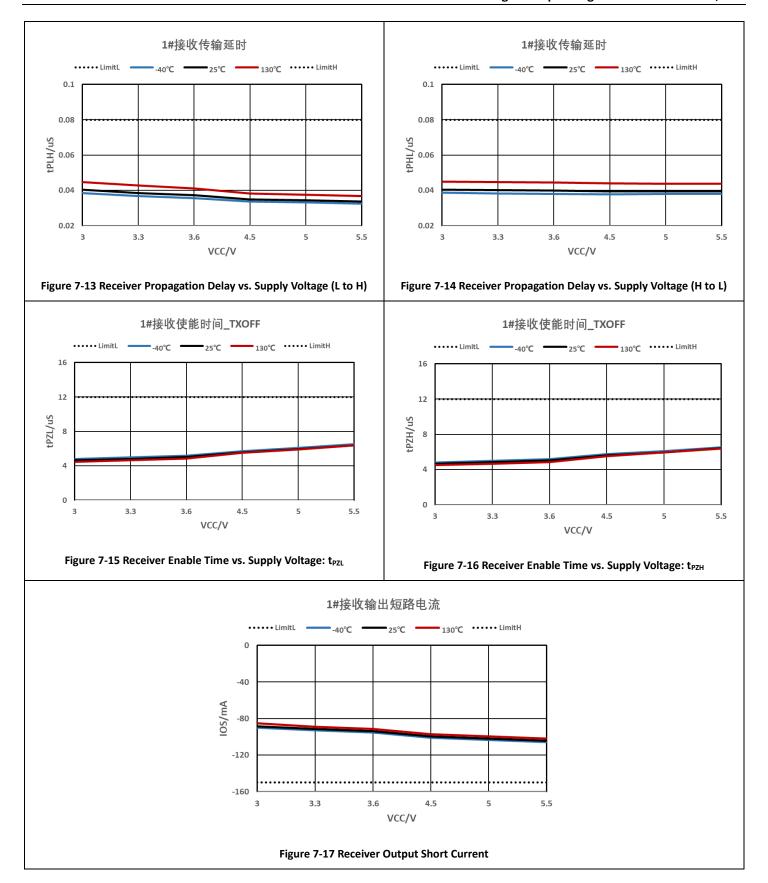




Figure 7-6 Driver Common-mode Output Voltage with 100Ω Load

8 Parameter Measurement Information

CHIPANALOG

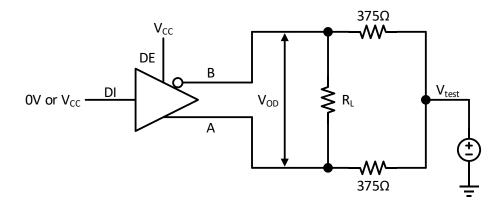


Figure 8-1 Measurement of Driver Differential Output Voltage With Common-Mode Load

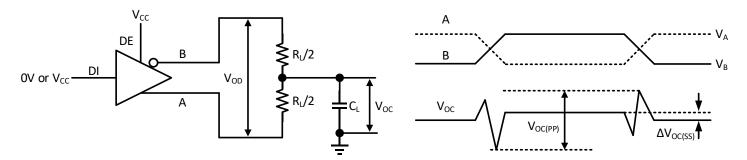


Figure 8-2 Measurement of Driver Differential and Common-Mode Output Voltage With RS-485 Load

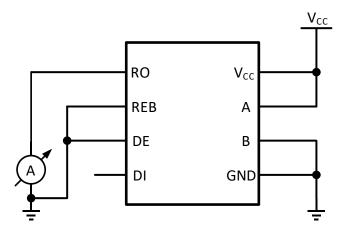


Figure 8-3 Measurement of Receiver Output Short Circuit Current

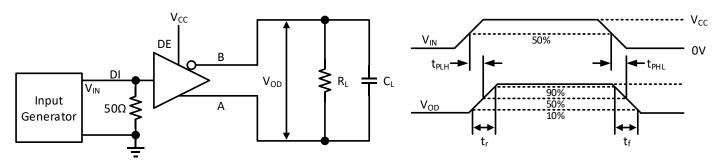


Figure 8-4 Measurement of Driver Output Rise and Fall Time and Propagation Delay

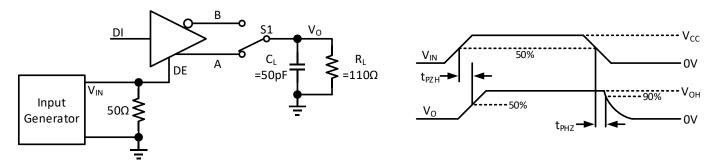


Figure 8-5 Measurement of Driver Enable and Disable Time With Active High Output and Pull-Down Load

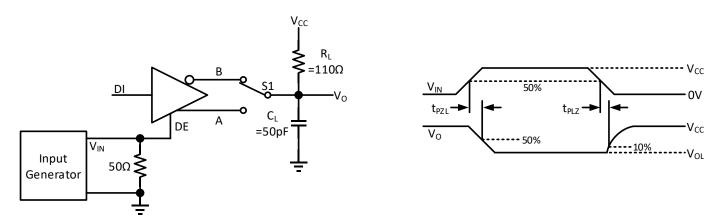


Figure 8-6 Measurement of Driver Enable and Disable Time With Active Low Output and Pull-Up Load

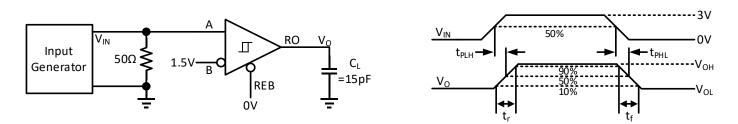


Figure 8-7 Measurement of Receiver Output Rise and Fall Time and Propagation Delay

CHIPANALOG

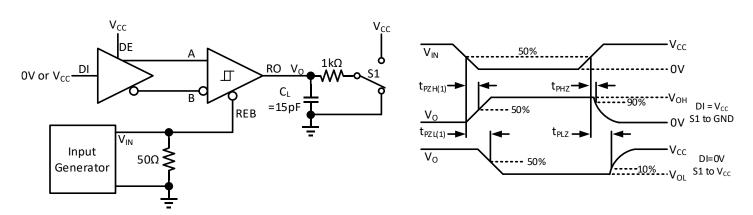


Figure 8-8 Measurement of Receiver Enable/Disable Time With Driver Enabled

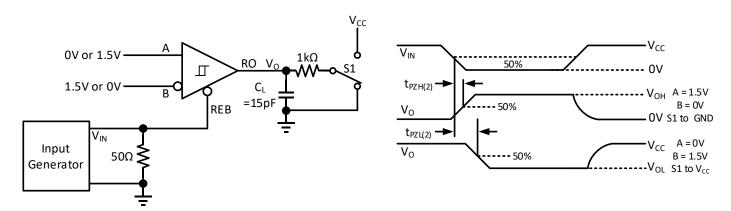


Figure 8-9 Measurement of Receiver Enable Time With Driver Disabled

9 Detailed Description

9.1 System Overview

The CS485xx devices are optimized for RS-485 applications which meet or exceed the requirements of the TIA/EIA-485A standard. These devices have two options in data rate: 500kbps and 20Mbps. The bus pins could withstand high-level ESD events to protect internal circuit without damage, which is suitable in harsh industrial and electrical environments. These devices could guarantee a logical high on the receiver output when the bus inputs are open, short or on idle state, thus eliminating the need of external failsafe bias resistors. These devices also integrate thermal shutdown protection circuit. When the junction temperature rises above 170°C (typical value), the output of driver is disabled and the output of RO is high-impedance. When the junction temperature falls below 150°C (typical value), the output of both driver and receiver is re-enabled. These devices are specified over extended industrial temperature range of –40°C to 125°C.

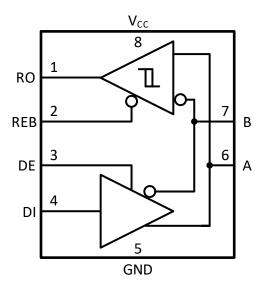


Figure 9-1 Simplified Functional Blcok Diagram

9.2 Device Function Mode

9.2.1 Driver

Table 9-1 Truth Table of Driver¹

INPUT	INPUT ENABLE		PUT	FUNCTION		
DI ²	DE ³	А	В	FONCTION		
Н	Н	Н	L	Actively drive bus high		
L	Н	L	Н	Actively drive bus low		
X	L	High-Z High-Z		Driver disabled		
Х	Open	High-Z	High-Z	Driver disabled by default		
Open	Н	Н	L	Actively drive bus high by default		

NOTE:

- 1. H = high level, L = low level, X = irrelevant, High-Z = high impedance.
- 2. DI is weakly pulled up to V_{CC} internally.
- B. DE is weakly pulled down to GND internally.

When the enable pin DE of driver is logical high, the differential outputs of A and B follow with the data input DI, which is shown in Table 9-1.

When DE is logical low or open, the driver is disabled, the outputs of A and B are high-impedance and are irrelevant to the state at DI pin. DI pin is weakly pulled up to V_{CC} internally, the output of A is high while B is low when driver is enabled and DI's input is open.

9.2.2 Receiver

When the enable pin REB of receiver is logical low, receiver is enabled. The truth table of receiver is shown in Table 9-2.

When the bus differential input voltage V_{ID} is greater than or equal to V_{TH+} , receiver output RO is logical high. When V_{ID} is less than or equal to V_{TH-} , receiver output RO is logical low. When V_{ID} is between V_{TH+} and V_{TH-} , receiver output RO is indeterminate.

When REB is logical high or open, the receiver output RO is high-impedance and is irrelevant to the magnitude and polarity of $V_{\rm ID}$.

When the bus inputs are open, short or on idle state, a failsafe logic high output at RO pin is achieved, avoiding indeterminate state which may result in system communication errors.

Table 9-2 Truth Table of Receiver¹

DIFFERENTIAL INPUT	ENABLE	OUTPUT	FUNCTION			
$V_{ID} = V_A - V_B$	REB ²	RO				
$V_{ID} \ge V_{TH+}$	L	Н	Output valid high			
$V_{TH-} < V_{ID} < V_{TH+}$	L	?	Indeterminate bus state			
$V_{ID} \leq V_{TH-}$	L	L	Output valid low			
X	Н	High-Z	Receiver disabled			
X	Open	High-Z	Receiver disabled by default			
Open-circuit bus	L	Н	Failsafe output high			
Short-circuit bus	L	Н	Failsafe output high			
Idle (terminated) bus	L	Н	Failsafe output high			

NOTE:

^{1.} H = high level, L = low level, X = irrelevant, High-Z = high impedance, Open = no connection, ? = indeterminate.

^{2.} REB is weakly pulled up to V_{CC} internally.

10 Application and Implementation

10.1 Typical Application

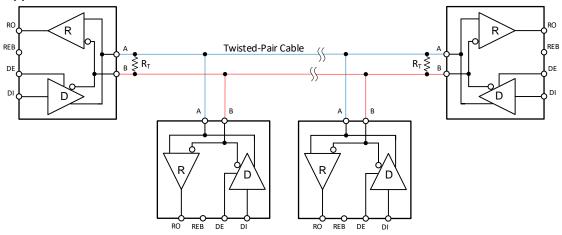
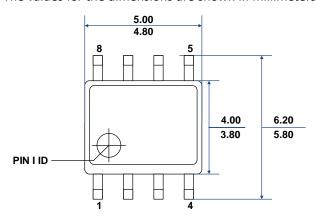
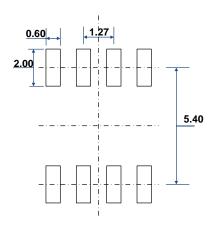


Figure 10-1 Typical RS-485 Network

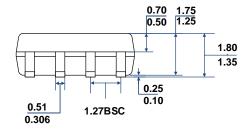
The typical RS-485 network consists of multiple transceivers connecting in parallel to a bus cable. To eliminate the line reflection, both ends of the cable terminate a termination resistor R_T which should be matched to the characteristic impedance Z_0 of the cable. At the same time, please keep the stub lengths off the main line as short as possible. This parallel termination method could achieve higher data rates over longer cable length. The typical RS-485 network utilizing CS485xx is shown in Figure 10-1.

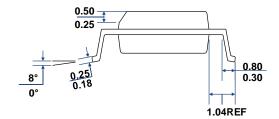
10.2 Power Supply Recommendation


To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with 100nF to 220nF ceramic capacitors located as close as possible to the supply pins. This helps to reduce supply voltage ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes. At the same time, please keep the voltage in V_{CC} pin with respect to GND pin is below 5.5V.


11 Package Information

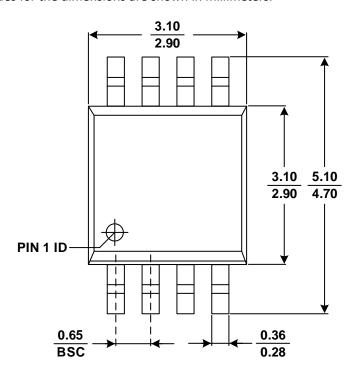
11.1 SOIC8 (S) Package


The values for the dimensions are shown in millimeters.

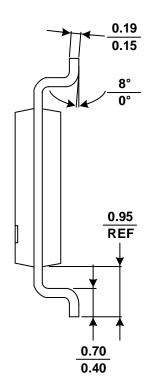

TOP VIEW

RECOMMENDED LAND PATTERN

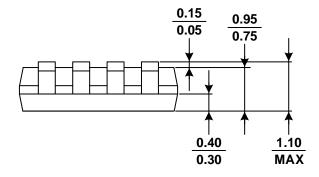
FRONT VIEW



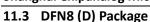
LEFT-SIDE VIEW



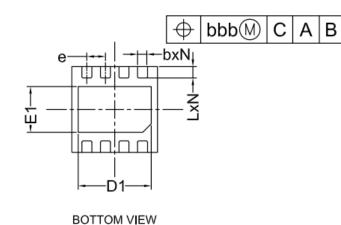
11.2 MSOP8 (M) Package

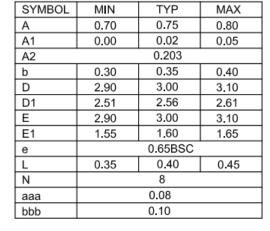

The values for the dimensions are shown in millimeters.

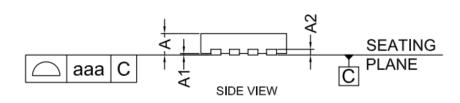
TOP VIEW

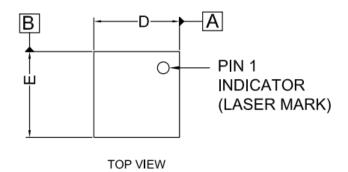


SIDE VIEW

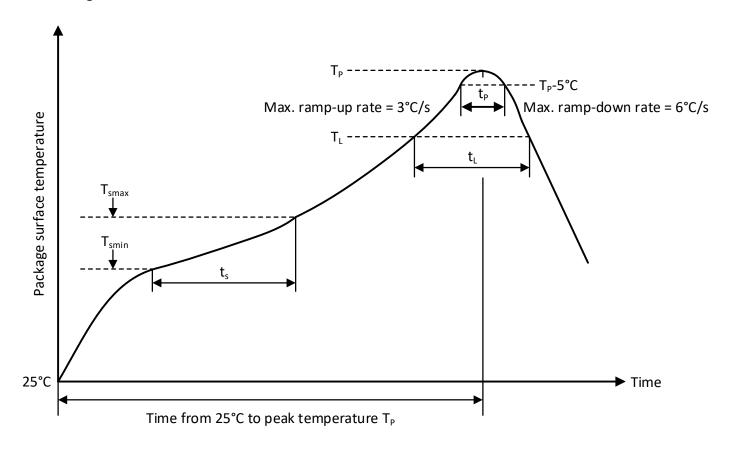

SIDE VIEW






CHIPANALOG

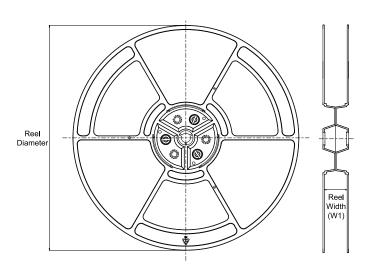
The values for the dimensions are shown in millimeters.

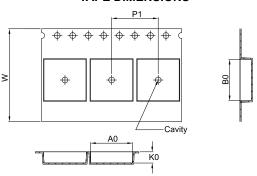


12 Soldering Information

Figure 12-1 Soldering Temperature Curve

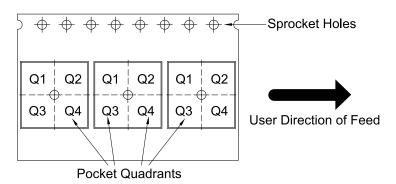
Table 12-1 Soldering Temperature Parameters


Profile Feature	Pb-Free Soldering				
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max				
Time t_s of preheat temp ($T_{smin} = 150$ °C to $T_{smax} = 200$ °C)	60~120 seconds				
Time t _L to be maintained above 217°C	60~150 seconds				
Peak temperature T _P	260°C				
Time t _P within 5°C of actual peak temp	30 seconds max				
Ramp-down rate (peak T_P to $T_L = 217$ °C)	6°C/s max				
Time from 25°C to peak temperature T _P	8 minutes max				


13 Tape and Reel Information

CHIPANALOG

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CS48505S	SOIC8	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CS48520S	SOIC8	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CS48505M	MSOP8	М	8	5000	330	12.6	6.55	5.4	1.9	8.0	12.0	Q1
CS48520M	MSOP8	М	8	5000	330	12.6	6.55	5.4	1.9	8.0	12.0	Q1
CS48505D	DFN8	D	8	3000	330	12.4	3.3	3.3	1.1	8.0	12.0	Q1
CS48520D	DFN8	D	8	3000	330	12.4	3.3	3.3	1.1	8.0	12.0	Q1

14 Important Notice

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. ®, Chipanalog® are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com