

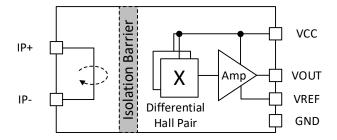
Precision 120kHz Hall-Effect Current Sensor with 3.75kV_{RMS} Isolation Voltage and Zero Current Output Voltage Reference

1. Features

- Differential hall sensing rejects common-mode fields and nearly zero magnetic hysteresis
- Integrated digital temperature compensation circuitry allows for near closed loop accuracy
- High immunity to external magnetic fields
- Precision zero-current reference output
- Primary conductor resistance: 1mΩ
- High current sense range capability
 - CA-IS23025S: ±25А_{РК}
 - CA-IS23030S: ±30A_{PK}
 - CA-IS23050S: ±50А_{РК}
- Fast response
 - Signal bandwidth: 120kHz
 - Propagation delay: 2µs
 - Response time: 3.7µs
- Operating supply voltage: 4.5V to 5.5V
- Bidirectional and unidirectional current sensing
- -40°C to +150°C Operating Junction Temperature Range
- Robust Galvanic Isolation
 - 3750V_{RMS} withstand isolation voltage
 - 297V_{RMS} maximum working isolation voltage
 - 6kV maximum surge isolation withstand voltage
- 8-pin narrow-body SOIC8 (S) Package
- Safety regulatory approvals
 - UL certification according to UL 1577
 - TUV certification

2. Applications

- Solar Energy
- Motor Control
- EC Charging
- Power Supplies
- Industrial AC/DC and DC/DC


3. General Description

The CA-IS23xxxS family is a series of highly accurate and cost-effective current sensor IC suitable for AC/DC current sensing in a variety of industrial, commercial, and communications systems. It features a low-offset, linear Hall sensor circuit and a copper conduction path that generates a magnetic field when current flows through it. The integrated Hall IC senses this magnetic field and converts it into a proportional voltage output, which has a positive slope proportional to the current flowing through the primary copper conduction path. The device senses current differentially, rejecting common-mode fields and improving accuracy in magnetically noisy environments. With its $1m\Omega$ internal resistance, the primary copper conduction path current withstand capability.

The CA-IS23xxxS is available in 8-pin narrow-body SOIC packages. The CA-IS23xxxS is rated for operation at junction temperatures of -40°C to +150°C.

Device Information

Part Number	Package	Package Size (NOM)
CA-IS23025S		
CA-IS23030S	SOIC8 (S)	4.9mm x 3.9mm
CA-IS23050S		

Figure 3-1 Simplified Schematic

4. Ordering Information

Table 4-1 Ordering Information

Part Number	Primary Current (A)	Power Supply (V)	Sensitivity (mV/A)	Zero Current Output Voltage (V)	Package
CA-IS23025S	±25	5	80	2.5	SOIC8 (S)
CA-IS23030S	±30	5	66.67	2.5	SOIC8 (S)
CA-IS23050S	±50	5	40	2.5	SOIC8 (S)

Table of Contents

1.	Feat	ures	1
2.	Appl	ications	1
3.	Gene	eral Description	1
4.	Orde	ering Information	2
5.	Pin C	Configuration and Description	4
	5.1.	CA-IS23xxxS Pin Configuration and Description	4
6.	Spec	ifications	5
	6.1.	Absolute Maximum Ratings ¹	5
	6.2.	ESD Ratings	5
	6.3.	Recommended Operating Conditions	5
	6.4.	Thermal Information	5
	6.5.	Insulation Specifications	6
	6.6.	Safety-Related Certifications	
	6.7.	Common Electrical Characteristics ¹	
	6.8.	Performance Characteristics ¹	7

7.	Deta	iled Description	9
	7.1.	Overview	9
	7.2.	Quiescent Output Voltage (Vout(Q))	9
	7.3.	Response Time (t _{RESPONSE})	9
	7.4.	Power-On Time (t _{PO})	10
	7.5.	Transfer Function	10
8.	Appl	lication and Implementation	11
	8.1.	Typical Application Circuit	11
	8.2.	PCB Layout Guidelines	
9.	Pack	age Information	13
	9.1.	8-Pin Narrow Body SOIC Package Outline	13
10.	Sold	ering Information	14
		and Reel Information	
	-	sion History	
		ortant Statement	

5. Pin Configuration and Description

5.1. CA-IS23xxxS Pin Configuration and Description

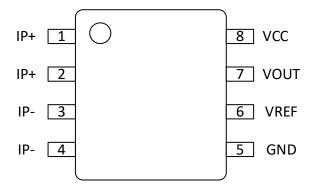


Figure 5-1 The CA-IS23xxxS Pin Configuration

Table 5-1 The CA-IS23xxxS Pin Description

Pin Name	Pin Number	Туре	Description
IP+	1, 2	Input	Input current positive pin
IP-	3, 4	Input	Input current negative pin
GND	5	Ground	Ground
VREF	6	Output	Zero current output voltage reference. Leave pin floating if not used
VOUT	7	Output	Output voltage
VCC	8	Power Supply	Power supply

6. Specifications

6.1. Absolute Maximum Ratings¹

over operating free-air temperature range unless otherwise specified.¹

	Parameters	Minimum	Maximum	Unit
V _{CC}	Supply voltage	0	6	V
V _{RCC}	Reverse supply voltage	-0.5	0	V
V _{OUT}	Output voltage	0	6	V
V _{ROUT}	Reverse output voltage	-0.5	0	V
T _A	Operating ambient temperature	-40	125	°C
T _J ²	Junction temperature	-55	165	°C
T _{stg}	Storage temperature	-65	170	°C

Notes:

1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.

2. To maintain the recommended operating junction temperature conditions, see Thermal Information.

6.2. ESD Ratings

			Value	Unit
Υ.	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001.	±2000	V
V _{ESD}	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101.	±1000	v

6.3. Recommended Operating Conditions

Over operating free-air temperature range unless otherwise specified.

	Parameters	Minimum	Typical	Maximum	Unit
V _{CC}	Operating supply voltage	4.5	5	5.5	V
T _A	Ambient temperature	-40		125	°C
Tj	Junction temperature	-40		150	°C

6.4. Thermal Information

	Thermal Metric	Package SOIC8 (S)	Unit
R _{θJA}	Junction-to-ambient thermal resistance	91	°C/W
$R_{\theta JC(top)}$	Junction to Case (top)	43	°C/W

CHIPANALOG

CA-IS23025S, CA-IS23030S, CA-IS23050S

Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

6.5. Insulation Specifications

	Parameters	Test Conditions	Specifications SOIC8 (S)	Unit
Vsurge	Surge voltage	Tested ± 5 pulses at 2 minutes in compliance to IEC 61000-4-5 1.2 μ s (rise) / 50 μ s (width)	6	kV
V _{ISO}	Dielectric Strength Test Voltage	Agency type-tested for 60 seconds per UL standard 60950-1 (edition 2); production- tested at V_{ISO} for 1 second, in accordance with UL 60950-1 (edition 2).	3750	V _{RMS}
V _{WVBI}	Working Voltage for Basic Isolation	Maximum approved working voltage for basic (single) isolation according to UL 60950-1 (edition	420	V _{PK} or V _{DC}
		2)	297	V _{RMS}
D _{cl}	External Clearance	Minimum distance through air from IP leads to signal leads.	4.2	mm
D _{cr}	External Creepage	Minimum distance along package body from IP leads to signal leads.	4.2	mm
DTI	Distance Through Insulation	Minimum internal distance through insulation	90	μm
СТІ	Comparative Tracking Index	Material Group II	400 to 599	V

6.6. Safety-Related Certifications

UL (Pending)	TUV (Pending)
Certified according to UL 1577 Component Recognition Program	Certified according to EN 61010-1 and EN 62368-1
Single protection	EN 61010-1
3750V _{RMS}	3750V _{RMS}
	EN 62368-1
	3750V _{RMS}
Certification Number:	Client reference number:
Pending	2253313

6.7. Common Electrical Characteristics¹

All minimum/maximum specs are at $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, $V_{CC} = 5V$, unless otherwise noted

	Parameters	Test Conditions	Minimum	Typical	Maximum	Unit
POWER						
V _{cc}	Supply Voltage		4.5	5.0	5.5	V
I _{cc}	Supply Current	V _{CC} = 5V, output open	11.5	14.0	16.0	mA
t _{PO}	Power-on Time	T _A = 25°C		78.0		μs
V _{UVLOH}	UVLO voltage threshold	V _{CC} rising		3.8		V
V _{UVLOL}	UVLO voltage threshold	V _{cc} falling		3.2		V
Output St	age	·	•			
CL	Output Capacitance Load	VOUT to GND		1.0	10.0	nF
RL	Output Resistive Load	VOUT to GND and VOUT to VCC	4.7			kΩ
R _{REF}	VREF Resistive Load	VREF to GND and VREF to VCC	100			kΩ
t _r	Rise Time	T _A = 25°C, C _L = 1nF		3.6		μs
t _{pd}	Propagation Time	T _A = 25°C, C _L = 1nF		2.0		μs
t _{response}	Response Time	T _A = 25°C, C _L = 1nF	3.0	3.7		μs
SR	Output Slew Rate	T _A = 25°C, C _L = 1nF		0.4		V/µs
V _{REF_INIT}	Reference Output Voltage		2.48	2.5	2.52	V
V _{SAT(H)}	High Output Saturation Soltage ²	$R_{L(DOWN)} = 10k\Omega$ to GND	4.7			V
V _{SAT(L)}	Low Output Saturation Voltage ²	$R_{L(UP)} = 10k\Omega$ to VCC			0.3	V
Input Sta	ge					
R _{IP}	Primary Conductor Resistance	T _A = 25°C		1		mΩ
L _{IP}	Primary Conductor Inductance	T _A = 25°C		2		nH
CMFRR	Common Mode Field Rejection Ratio	Uniform external magnetic field		70		dB
Accuracy	and Frequency					
BW	Frequency Bandwidth	Small signal -3 dB; C _L = 1nF		120		kHz
I _N	Noise	Input-referenced noise: $C_F = 4.7 nF$, $C_L = 1 nF$, BW = 18kHz, $T_A = 25^{\circ}C$		100		mA _{RM}
E _{LIN}	Nonlinearity	Over full range of I _P		±0.2	±1	%
E _{SYM}	Symmetry	Over full range of I _P		±0.2	±1	%

Notes:

1. Device may be operated at higher primary current levels, I_P, ambient temperatures, T_A, and internal lead-frame temperatures, provided the Maximum Junction Temperature, T_J(max), is not exceeded.

2. The sensor IC will continue to respond to current beyond the range of I_P until the high or low output saturation voltage; however, the nonlinearity in this region will be worse than through the rest of the measurement range.

6.8. Performance Characteristics¹

All minimum/maximum specs are at T_A = -40°C to +125°C, V_{CC} = 5V, unless otherwise noted.

	Parameters	Test Conditions	Minimum	Typical ¹	Maximum	Unit				
Nominal Performance (CA-IS23025S)										
I _{PR}	Current-sensing Range		-25		25	А				
Sens	Sensitivity	Over full range of I _P , T _A = 25°C		80		mV/A				
V _{OUT(Q)}	Zero Current Output Voltage	Bidirectional; $I_P = 0A$, $T_A = 25^{\circ}C$	2.49	2.5	2.51	V				
Nominal	Performance (CA-IS23030S)									
I _{PR}	Current-sensing Range		-30		30	А				
Sens	Sensitivity	Over full range of I_P , $T_A = 25^{\circ}C$		66.67		mV/A				
V _{OUT(Q)}	Zero Current Output Voltage	Bidirectional; $I_P = 0A$, $T_A = 25^{\circ}C$	2.49	2.5	2.51	V				
Nominal	Performance (CA-IS23050S)									
I _{PR}	Current-sensing Range		-50		50	А				
Sens	Sensitivity	Over full range of I_P , $T_A = 25^{\circ}C$		40		mV/A				
V _{OUT(Q)}	Zero Current Output Voltage	Bidirectional; $I_P = 0A$, $T_A = 25^{\circ}C$	2.49	2.5	2.51	V				

CA-IS23025S, CA-IS23030S, CA-IS23050S

Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

Accuracy	Performance								
E _{TOT}	Total Quitnut Error ²	$I_P = I_{PR(max)}, T_A = 25^{\circ}C \text{ to } 125^{\circ}C$	-3	3	%				
	Total Output Error ²	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-1	4.5	%				
Total Output Error Components ³ E _{TOT} = E _{SENS} + 100 x V _{OE} /(Sens x I _P)									
E _{SENS}	Sensitivity Error	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.5	2.5	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-0.5	4.0	%				
V _{OE}	Voltage Offect Error	I _P = 0A, T _A = 25°C to 125°C	-10	20	mV				
	Voltage Offset Error	I _P = 0A, T _A = -40°C to 25°C	-10	10	mV				
Life Time	Drift Characteristics								
E_{SENS_drift}	Sensitivity Error Lifetime Drift	itivity Error Lifetime Drift ±1			%				
E _{TOT_drift}	Total Output Error Lifetime Drift		±	%					
Notes:		·							

1. Typical values with \pm are 3 sigma values.

2. Percentage of I_P , with $I_P = I_{PR(max)}$.

3. A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares.

7. Detailed Description

7.1. Overview

The CA-IS23xxxS current sensor are based on the Hall principle and can accurately measure AC/DC current while minimizing measurement costs. This sensor finds extensive use in various current monitoring applications, including consumer, industrial, and automotive scenarios. Compared to current transformers, the CA-IS23xxxS offers a compact size, which can significantly reduce PCB size. In comparison to shunt resistor + isolated amplifier solutions, the CA-IS23xxxS only requires low-side power supply, eliminating the complexity of high-side power supply design.

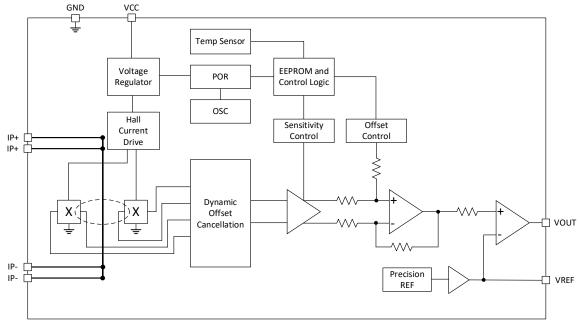


Figure 7-1 Functional Block Diagram

The internal conductor of the CA-IS23xxXS generates a magnetic field proportional to the current value, according to Maxwell's equations. The sensor converts this magnetic field value into a voltage output, ensuring a high level of accuracy. Moreover, the sensor has an ultra-small resistor value, ensuring little influence on thermal power consumption.

7.2. Quiescent Output Voltage (VOUT(Q))

The quiescent output voltage $V_{OUT(Q)}$ of the CA-IS23xxxS indicates the output voltage of the IC when there is no magnetic field. Although the theoretical output voltage of the CA-IS23xxxS is 2.5V, factors such as offset voltage, sensitivity, packaging stress, and temperature coefficient may cause the actual quiescent output voltage to deviate from the theoretical figure. During factory testing, the actual quiescent voltage is modified to be within ±20mV of the theoretical value. The quiescent output voltage is also influenced by the temperature coefficient, which means that as the temperature changes, the quiescent output voltage will also change (this effect is more noticeable when sensitivity is higher). The CA-IS23xxxS is equipped with temperature sensors that can modify the temperature coefficient of the quiescent output voltage.

7.3. Response Time (t_{RESPONSE})

Response Time is a term used to define the time difference between the moment when the magnetic field reaches 80% of its target value and the moment when the output voltage of the IC reaches 80% of its target value. This difference is measured and expressed in micro seconds. The Response Time is related to the sensitivity of the IC and the size of the output load capacitance. It is an important parameter to consider when using magnetic sensors, especially in applications where a quick response is required. The accuracy of the Response Time measurement is crucial to ensure reliable and precise operation of the sensor in various conditions.

CA-IS23025S, CA-IS23030S, CA-IS23050S Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

7.4. Power-On Time (t_{PO})

Power-On Time is a term used to define the time required for the output voltage of a sensor to reach 90% of its target value after the supply voltage reaches 4.5V, at a specific magnetic field strength. This time difference is measured and expressed in micro seconds. The Power-On Time is an important parameter to consider when using magnetic sensors, especially in applications where a quick response is required. The accuracy of the Power-On Time measurement is crucial to ensure reliable and precise operation of the sensor in various conditions.



Figure 7-2 Power-On Time and Response Time

7.5. Transfer Function

The ideal first-order transfer function of the CA-IS23xxxS is given by Equation 1, where the output voltage V_{OUT} is a linear function of input current I_P . The accuracy of the device is quantified both by the error terms in the transfer function parameters, as well as by nonidealities that introduce additional error terms not in the simplified linear model.

$$V_{OUT} = (I_P \times Sens) + V_{REI}$$

Where:

- V_{OUT} is the output voltage.
- I_P is the isolated input current.
- Sens is the sensitivity of the CA-IS23xxxS.
- V_{REF} is the zero current reference output voltage.

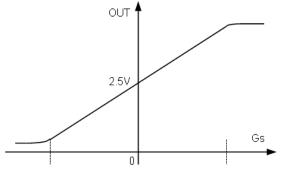


Figure 7-3 Transfer Function

CA-IS23025S, CA-IS23030S, CA-IS23050S Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

8. Application and Implementation

8.1. Typical Application Circuit

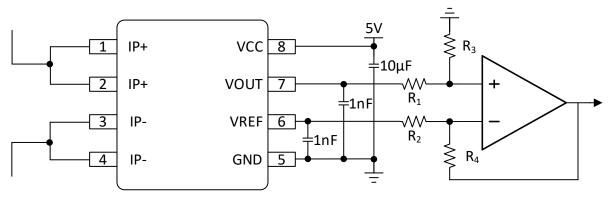



Figure 8-1 Single-Ended Output Application

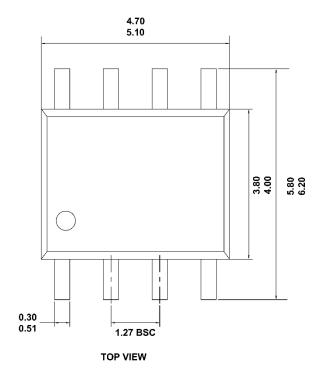
Figure 8-2 Differential Output Application

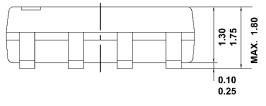
CA-IS23025S, CA-IS23030S, CA-IS23050S

Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

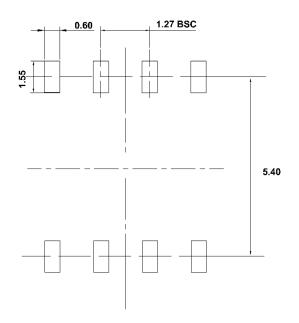
8.2. PCB Layout Guidelines


The CA-IS23xxxS is specified for a continuous current handling capability on the EVM which uses 4oz copper planes. This current capability is fundamentally limited by the maximum device junction temperature and the thermal environment, primarily the PCB layout and design. To maximize current-handling capability and thermal stability of the device, take care with PCB layout and construction to optimize the thermal capability. Efforts to improve the thermal performance beyond the design and construction of the EVM can result in increased continuous-current capability due to higher heat transfer to the ambient environment. Keys to improve thermal performance of the PCB include:


- Use large copper planes for both input current path and isolated power planes and signals.
- Use heavier copper PCB construction.
- Place thermal via farms around the isolated current input.
- Provide airflow across the surface of the PCB.

9. Package Information

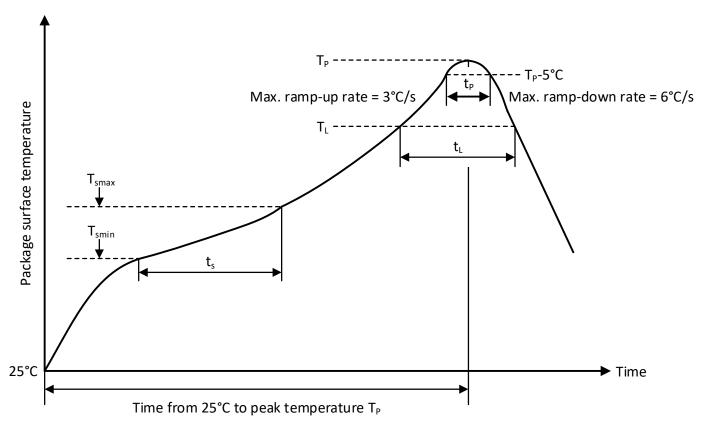
9.1. 8-Pin Narrow Body SOIC Package Outline

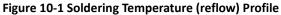


FRONT VIEW

Note:

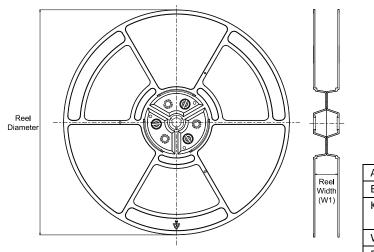
1. All dimensions are in millimeters, angles are in degrees.




RECOMMENDED LAND PATTERN

10. Soldering Information

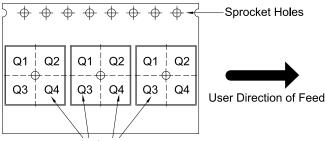
Profile Feature	Pb-Free Soldering
Ramp-up rate (T_L = 217°C to peak T_P)	3°C/s max
Time t_s of preheat temp (T_{smin} = 150°C to T_{smax} = 200°C)	60~120 seconds
Time t_L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to $T_L = 217^{\circ}C$)	6°C/s max
Time from 25°C to peak temperature T_P	8 minutes max



11. Tape and Reel Information

REEL DIMENSIONS

CA-IS23025S, CA-IS23030S, CA-IS23050S Version 1.00


TAPE DIMENSIONS

P1 -	
A0 K0	

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
К0	Dimension designed to accommodate the component
	thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	КО (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS23025S	SOIC	S	8	2500	330	12.40	6.40	5.40	2.10	8.00	12.00	Q1
CA-IS23030S	SOIC	S	8	2500	330	12.40	6.40	5.40	2.10	8.00	12.00	Q1
CA-IS23050S	SOIC	S	8	2500	330	12.40	6.40	5.40	2.10	8.00	12.00	Q1

CA-IS23025S, CA-IS23030S, CA-IS23050S

Version 1.00

Shanghai Chipanalog Microelectronics Co., Ltd.

12. Revision History

Revision Number	Description	Date	Page Changed	
Version 1.00	Initial Version	2024/11/21	NA	

13. Important Statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.[®] and Chipanalog[®] are registered trademarks of Chipanalog.

http://www.chipanalog.com