CA-IS308x 5kV_{RMS} Isolated Half/Full-Duplex RS-485/RS-422 Transceivers

1. Features

High-Performance and Compliant with RS-485 EIA/TIA-485 Standard

- 500kbps, 10Mbps or 20Mbps data rate optional
- 1/8-unit load enables up to 256 nodes on the bus
- 2.375V to 5.5V logic side supply voltage and 3 V to 5.5 V bus side supply voltage
- Bus common mode supply rage
- CA-IS3080/86: -15V to +15V
- CA-IS3082/88: -7V to +12V
- CMTI: ±150kV/µs (typical)
- Output current limited and thermal shutdown protection on driver side
- Open, short circuit protection and bus failure protection
- Wide operating temperature range: –40°C to 125°C
- Wide-body SOIC16-WB(W) Package
- High lifetime: >40 years

Safety Regulatory Approvals

- VDE certification according to DIN EN IEC 60747-17(VDE 0884-17):2021-10
- UL certification according to UL 1577
- CQC certification according to GB4943.1-2022
- TUV certification:
 - according to EN 61010-1
 - according to EN 62368-1

2. Applications

- Industrial Automation Equipment
- Grid infrastructure
- Solar inverter
- Motor drivers
- HVAC

3. General Description

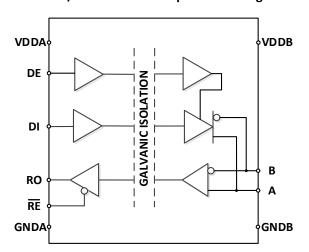
The CA-IS308x family of devices is a galvanically-isolated RS-485/RS-422 transceiver that has superior isolation and

RS485 performance to meet the needs of the industrial applications. All devices of this family have the logic input and output buffers separated by a silicon oxide (SiO₂) insulation barrier that provides galvanic isolation, features up to $5000V_{RMS}$ (60s) of galvanic isolation and $\pm 150 kV/\mu s$ typical CMTI. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.

The CA-IS308x family of devices supports multiple nodes communications on bus line, and maximum data rate up to 20Mbps, allowing up to 256 transceivers (loads) on a common bus. Maintaining multidrop operation and increasing the maximum data rate offers a more robust system design for reliable communication. For the CA-IS308x family of devices, The CA-IS3080 and CA-IS3086 full-duplex transceivers are designed for bidirectional data communications on multipoint bus transmission lines simultaneously. The CA-IS3082 and CA-IS3088 provide half-duplex transceivers, the driver and receiver enable pins let any node at any given moment be configured in either transmit or receive mode which decreases cable requirements.

The CA-IS308x series devices are available in wide-body SOIC16 package which is the industry standard isolated RS-485/RS-422 package, and operate over -40°C to +125°C temperature range.

Device information


Part #	Package	Package size (NOM)
CA-IS3080		
CA-IS3082	SOIC16-WB(W)	10.30 mm × 7.50 mm
CA-IS3086		10.30 111111 × 7.30 111111
CA-IS3088		

CA-IS3080/CA-IS3086 full-duplex block diagram

VDDA RO RE DE DI GNDA VDDB B A Z Y GNDB

CA-IS3082/CA-IS3088 half-duplex block diagram

4. Ordering Information

Table. 4-1 Ordering Information

	Model	V _{DDA} (V)	V _{DDB} (V)	Full/half-duplex	Transmission speed (Mbps)	Rated voltage (V _{RMS})	Package
	CA-IS3080WX	2.375~5.5	3.0~5.5	Full-duplex	0.5	5000	SOIC16-WB
	CA-IS3086WX	2.375~5.5	3.0~5.5	Full-duplex	10	5000	SOIC16-WB
	CA-IS3082WX	2.375~5.5	3.0~5.5	Half-duplex	0.5	5000	SOIC16-WB
	CA-IS3082WNX	2.375~5.5	3.0~5.5	Half-duplex	0.5	5000	SOIC16-WB
	CA-IS3088WX	2.375~5.5	3.0~5.5	Half-duplex	20	5000	SOIC16-WB

Contents

1.	Featu	es		1
2.	ilaaA	ations	1	1
3.			1	
4.				
5.		_	cription	
6.		-	· ·····	
	6.1.		Ratings ¹	
	6.2.			
	6.3.		ating Conditions	
	6.4.		-	
	6.5.	Insulation Specificati	ons	
	6.6.		ications	
	6.7.		s	
	6.8.		tics10	
	6.8	1. Driver	10	ĺ
	6.8	2. Receiver	1	1
	6.9.	Supply Current	12	
	6.10.	Switching Characteri	stics12	
	6.1).1. Driver	12	

	6.10).2.	Receiver	13
7.	Param	eter	Measurement Information	14
8.	Detaile	ed D	escription	17
	8.1.	Log	ic Input	17
	8.2.	Rec	eiver	17
	8.3.	Driv	ver	18
	8.4.	Pro	tection Functions	19
	8.4.3	1.	Signal Isolation	19
	8.4.2	2.	Thermal Shutdown	19
	8.4.3	3.	Current-Limit	19
9.	Applica	atio	ns Information	19
	9.1.	Тур	ical Application	19
	9.2.	256	transceivers on the bus	21
	9.3.	PCE	3 Layout	21
10.	Packag	ge In	formation	22
11.	Solder	ing I	Information	23
		_	Reel Information	
	-		istory	
			Nation	26

5. Pin Configuration and Description

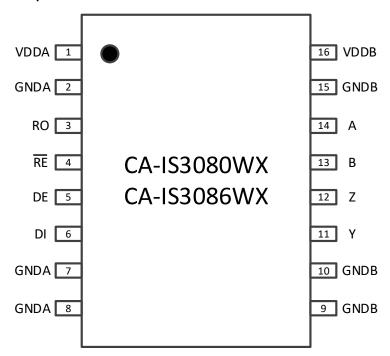


Figure. 5-1 CA-IS3080WX and CA-IS3086WX Top View

Tab. 5-1 CA-IS3080WX and CA-IS3086WX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both 0.1µF and 1µF capacitors as
VDDA	1	Power supply	close to the device as possible.
GNDA	2, 7, 8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
DO.	2	Dinital I/O	Receiver Data Output. Drive \overline{RE} low to enable RX. With \overline{RE} low, RO is high when (V _A –
RO	3	Digital I/O	V_B) > -20mV and is low when $(V_A - V_B)$ < -200mV.
DE.	4	Dinital I/O	Receiver Output Enable. Driver $\overline{\text{RE}}$ low or connect to GNDA to enable RX. Drive $\overline{\text{RE}}$ high
RE	4	Digital I/O	to disable RX.
			Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or
DE	5	Digital I/O	·
	GNDA.		
		Digital I/O	Driver Input. With DE high, a logic low on DI forces the noninverting output (Y) low and
DI	6		the inverting output (Z) high; a logic high on DI forces the noninverting output high and
			the inverting output low.
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus signals.
Υ	11	Bus I/O	Non-inverting RS-485/RS-422 driver output.
Z	12	Bus I/O	Inverting RS-485/RS-422 driver output.
В	13	Bus I/O	Inverting RS-485/RS-422 receiver input.
А	14	Bus I/O	Non-inverting RS-485/RS-422 receiver input.
VDDB	16	Dower supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1µF and 1µF capacitors as
VDDB	10	Power supply	close to the device as possible.

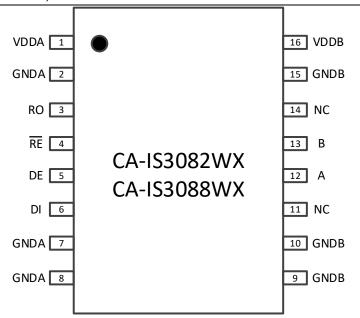


Figure. 5-2 CA-IS3082WX and CA-IS3088WX Top View

Tab. 5-2 CA-IS3082WX and CA-IS3088WX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both $0.1\mu F$ and $1\mu F$ capacitors as close to the device as possible.
GNDA	2, 7, 8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
RO	3	Digital I/O	Receiver Data Output. Drive \overline{RE} low to enable RX. With \overline{RE} low, RO is high when $(V_A - V_B) > -50$ mV and is low when $(V_A - V_B) < -200$ mV.
RE	4	Digital I/O	Receiver Output Enable. Driver \overline{RE} low or connect to GNDA to enable RX. Drive \overline{RE} high to disable RX.
DE	5	Digital I/O	Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or connect to GNDA to disable bus driver outputs. DE has an internal weak pull-down to GNDA.
DI	6	Digital I/O	Driver Input. With DE high, a logic low on DI forces the noninverting output (A) low and the inverting output (B) high; a logic high on DI forces the non-inverting output high and the inverting output low.
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus signals.
NC	11, 14	-	No internal connection
А	12	Bus I/O	Non-inverting RS-485 receiver input and driver output.
В	13	Bus I/O	Inverting RS-485 receiver input and driver output.
VDDB	16	Power supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1 μ F and 1 μ F capacitor as close to the device as possible.

Figure. 5-3 CA-IS3082WNX Top View

Tab. 5-3 CA-IS3082WNX Pin Description

Pin name	Pin number	Туре	Description
VDDA	1	Power supply	Logic-Side Power Input. Bypass VDDA to GNDA with both 0.1μF and 1μF capacitors
V B B N	-	Tower suppry	as close to the device as possible.
GNDA	2, 8	Ground	Logic-Side Ground. GNDA is the ground reference for digital signals.
RO	3	Digital I/O	Receiver Data Output. Drive $\overline{\text{RE}}$ low to enable RX. With $\overline{\text{RE}}$ low, RO is high when
NO	3	Digital 1/O	$(V_A - V_B) > -50$ mV and is low when $(V_A - V_B) < -200$ mV.
RE	4	Digital I/O	Receiver Output Enable. Driver $\overline{\text{RE}}$ low or connect to GNDA to enable RX. Drive $\overline{\text{RE}}$
KE	4	Digital I/O	high to disable RX.
			Driver Output Enable. Drive DE high to enable bus driver outputs. Drive DE low or
DE	5	Digital I/O	connect to GNDA to disable bus driver outputs. DE has an internal weak pull-down
			to GNDA.
		5 Digital I/O	Driver Input. With DE high, a logic low on DI forces the noninverting output (A) low
DI	6		and the inverting output (B) high; a logic high on DI forces the non-inverting
			output high and the inverting output low.
NC	7	-	No internal connection
GNDB	9, 10, 15	Ground	Cable Side Ground. GNDB is the ground reference for the RS-485/RS-422 bus
GINDB	9, 10, 13	Ground	signals.
NC	10, 11, 14	-	No internal connection
Α	12	Bus I/O	Non-inverting RS-485 receiver input and driver output.
В	13	Bus I/O	Inverting RS-485 receiver input and driver output.
VDDB	16	Power supply	Cable Side Power Input. Bypass VDDB to GNDB with both 0.1µF and 1µF capacitor
VDDB	10	rower supply	as close to the device as possible.

6. Specifications

6.1. Absolute Maximum Ratings¹

	Parameters		Minimum value	Maximum value	Unit
V_{DDA} , V_{DDB}	Power supply voltage ²		-0.5	6.0	V
.,	Logic voltage (A. D. V. 7)	CA-IS3080/86	-30	30	V
V _{IO}	Logic voltage (A, B, Y, Z)	(A, B, 1, 2) CA-IS3082/88		13	V
V _{IO}	Logic voltage (DI, DE, RE, RO)		-0.5	V _{DDA} +0.5 ³	V
Io	I _O Output current on RO			20	mA
Tj	T _J Junction temperature			150	°C
T _{STG}	Storage temperature range		-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not exceed 6V.

6.2. ESD Ratings

			Value	Unit	
.,	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	Logic-Side Pins to GNDA	±6k		
V _{ESD}		Cable Side to GNDB	±6k		
Electrostatic discharge		Bus pin to GNDB	±6k		
discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins		±2k		

6.3. Recommended Operating Conditions

	Parameters		Minimum value	Typical value	Maximum value	Unit	
V_{DDA}	Power supply voltage on side A		2.375	3.3 or 5V	5.5	V	
V_{DDB}	Power supply voltage on side B		3	3.3 or 5V	5.5	V	
V _{oc}	Common mode voltage at bus pins: A, B, (CA-IS3082/88)		-7		12	V	
V _{oc}	Common mode voltage at bus pins: A, B, Y and Z	(CA-IS3080/86)	-15		15	V	
	Differential investoral to an V	CA-IS3080/86	-12		12		
V_{ID}	Differential input voltage V _{AB}	CA-IS3082/88	-15		15	V	
R_L	Differential load resistance	•	54			Ω	
V _{IH}	Input high voltage (DI, DE to GNDA)		2.0		V _{DDA} +0.3	V	
V _{IL}	Input low voltage (DI, DE to GNDA)		-0.3		0.8	V	
V _{IH}	Input high voltage (RE to GNDA)		0.7xV _{DDA}		V _{DDA} +0.3	V	
V _{IL}	Input low voltage (RE to GNDA)		-0.3		$0.3xV_{DDA}$	V	
		CA-IS3080WX					
		CA-IS3082WX			0.5		
DR	Data rate	CA-IS3082WNX				Mbps	
		CA-IS3086WX			10		
		CA-IS3088WX			20		
T _A	Environmental temperature	•	-40		125	°C	

6.4. Thermal Information

	Thermal Metric	CA-IS308x	Unit
R _{0IA}	Junction-to-ambient thermal resistance	83.4	°C/W

6.5. Insulation Specifications

	PARAMETR	TEST CONDITIONS	VALUE	UNIT
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mm
CPG	External eroonage1	Shortest terminal-to-terminal distance across the	0	ma ma
CPG	External creepage ¹	package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	> 600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 400 V _{RMS}	I-IV	7
		Rated mains voltage ≤ 600 V _{RMS}	1-111	7
DIN V VI	DE V 0884-11:2017-01 ²		-	
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	V _{PK}
		AC voltage; Time dependent dielectric breakdown		1
V_{IOWM}	Maximum working isolation voltage	(TDDB) Test	1000	V _{RMS}
		DC voltage	1414	V _{DC}
		$V_{TEST} = V_{IOTM}$,		1
V _{IOTM}	l t	t = 60 s (qualification);		
	Maximum transient isolation voltage	$V_{TEST} = 1.2 \times V_{IOTM}$	7070 V _i	V_{PK}
		t= 1 s (100% production)		
V _{IMP}	Maximum impulse voltage	1.2/50-µs waveform per IEC 62368-1	9846	V _{PK}
		$V_{IOSM} \ge 1.3 \text{ x } V_{IMP}$; Tested in oil (qualification test),		
V_{IOSM}	Maximum surge isolation voltage ³	1.2/50-µs waveform per IEC 62368-1	12800	V_{PK}
		Method a, After input/output safety test subgroup 2/3,		+
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s;	≤ 5	
		$V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10 \text{ s}$		
		Method a, After environmental tests subgroup 1,		
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤ 5	
q_{pd}	Apparent charge ⁴	$V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10 \text{ s}$		pC
		Method b1, At routine test (100% production) and		┪
		preconditioning (type test)		
		$V_{\text{ini}} = 1.2 \times V_{\text{IOTM}}$, $t_{\text{ini}} = 1$ s;	≤ 5	
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 \text{ s}$		
C _{IO}	Barrier capacitance, input to output ⁵	$V_{IO} = 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz	~ 0.5	pF
910	Darrier capacitance, input to catput	V _{IO} = 500 V, T _A = 25°C	> 10 ¹²	- Pr
R _{IO}	Isolation resistance ⁵	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	> 10 ¹¹	Ω
	15514.1511.155144.152	V _{IO} = 500 V at T _S = 150°C	> 109	┪ -
	Pollution degree	V ₁₀ 300 V dt 13 130 C	2	+
UL 1577		1		
01 13//		$V_{TEST} = V_{ISO}$, t = 60 s (qualification),		
V_{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, $t = 00.5$ (qualification), $V_{TEST} = 1.2 \times V_{ISO}$, $t = 1.5$ (100% production)	5000	V_{RMS}
		1 * 1ES1	•	

NOTE:

- 1. Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- 4. Apparent charge is electrical discharge caused by a partial discharge (pd).
- 5. All pins on each side of the barrier tied together creating a two-terminal device.

6.6. Safety-Related Certifications

VDE	UL	cqc	TUV
Certified according to DIN EN IEC	Certified according to UL	Certified according to	Certified according to EN
60747-17(VDE 0884-17):2021-10; EN	1577 Component Recognition	GB4943.1-2022	61010-1 and EN 62368-1
IEC 60747-17:2020+AC:2021	Program		
Reinforced isolation	Single protection:	Reinforced isolation	EN 61010-1:
VIORM: 1414VPK	5000V _{RMS}	(Altitude≤5000m)	5000V _{RMS}
VIOTM: 7070VРК			
VIOSM: 12800VPK			EN 62368-1:
			5000V _{RMS}
Certification number:	Certification number:	Certification number:	Client reference number:
40057278 (Reinforced isolation)	E511334	CQC23001406424	2253313

6.7. Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

	Parameter	Test Conditions	MIN	TYP	MAX	UNIT
	Safety input, output, or supply	$R_{\theta JA} = 83.4^{\circ}C/W$, $V_I = 5.5V$, $T_J = 150^{\circ}C$, $T_A = 25^{\circ}C$			272	A
Is	current	$R_{\theta JA} = 83.4^{\circ}C/W$, $V_I = 3.6V$, $T_J = 150^{\circ}C$, $T_A = 25^{\circ}C$			416	mA
D.	Safety input, output, or total	R _{θJA} = 83.4°C/W, T _J = 150°C, T _A = 25°C			1498	mW
Ps	power	$R_{0JA} = 83.4 \text{ C/VV, } I_{J} = 130 \text{ C, } I_{A} = 23 \text{ C}$			1490	IIIVV
Ts	Maximum safety temperature				150	°C

6.8. Electrical Characteristics

6.8.1. Driver

All typical specs are at $V_{DDA} = 3.3V$, $V_{DDB} = 5V$, $T_A = 25^{\circ}C$, Min/Max specs are over recommended operating conditions unless otherwise specified.

CA-IS3082WX, CA-IS3088WX, CA-IS3082WNX:

	Parameters	Test conditions	Minimum value	ТҮР	Maximum value	Unit
V _{OD1}	Driver differential-output voltage	V _{DDB} = 5V	2.7	4.6	5.5	V
V _{OD2}	Driver differential-output voltage		1.5	3.6		
Δ V _{OD}	Change in differential output voltage between two states	- R _L = 54Ω, see Figure 8-1	-0.2		0.2	V
V _{oc}	Common-mode output voltage		1	V _{DDB} /2	3	V
ΔV _{OC}	change in steady-state common-mode output voltage between two states		-0.2		0.2	
I _{IH} , I _{IL}	Input current(DI, DE)	V _{DI} , V _{DE} = 0V or V _{DDA}	-20		20	μΑ
1	Short-circuit output current	DE = V_{DDA} , V_A or V_B = -7V	-150		150	mA
I _{os}	Short circuit output current	DE = V_{DDA} , V_A or V_B = 12V	130		130	IIIA
CMTI	Common mode transient immunity	V _{CM} = 1500V; see Figure 8-8	100	150		kV/μS
Cı	Input capacitance	$VI = V_{DDA}/2 + 0.4 \times \sin(2\pi ft),$ $f = 1 \text{ MHz}, V_{DDA} = 5 \text{ V}$		4		pF

CA-IS3080WX, CA-IS3086WX:

	Parameters	Test conditions	Minimum value	ТҮР	Maximum value	Unit
V _{OD1}	Driver differential-output voltage	V _{DDB} = 5V	2.7	5	5.5	V
V _{OD2}	Driver differential-output voltage		1.5	3.7		
Δ V _{OD}	Change in differential output voltage between two states	R_L = 54Ω, see Figure 8-1	-0.2		0.2	V
Voc	Common-mode output voltage		1	V _{DDB} /2	3	
ΔV _{OC}	change in steady-state common-mode output voltage between two states		-0.2		0.2	
I _{IH} , I _{IL}	Input current(DI, DE)	V_{DI} , $V_{DE} = 0V$ or V_{DDA}	-20		20	μΑ
	Chart aircuit autaut aurrant	$DE = V_{DDA}, V_Y = -7V, V_Z = 12V$	250		350	m A
I _{os}	Short-circuit output current	$DE = V_{DDA}, V_{Y} = 12V, V_{Z} = -7V$	-250		250	mA
CMTI	Common mode transient immunity	V _{CM} = 1500V; see Figure 8-8	100	150		kV/μS
Cı	Input capacitance	$VI = V_{DDA}/2 + 0.4 \times \sin(2\pi ft),$ $f = 1 \text{ MHz}, V_{DDA} = 5 \text{ V}$		4		pF

6.8.2. Receiver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified. **CA-IS3082WX, CA-IS3088WX, CA-IS3082WNX:**

	Parameters	Test conditions	Minimum value	Typical value	Maximum value	Unit
V _{OH}	Output voltage high level	V _{DDA} = 5V, I _{OH} = -4mA	V _{DDA} -0.4	4.8		V
V _{OL}	Output voltage low level	V _{DDA} = 5V, I _{OL} = 4mA		0.2	0.4	V
V _{IT+(IN)}	Positive-going input threshold voltage			-110	-50	mV
V _{IT-(IN)}	Negative-going input threshold voltage		-200	-140		mV
V _{I(HYS)}	Receiver input hysteresis			30		mV
	During the second	V_A or V_B = 12 V, other logic input pins are connected to 0 V		75	125	
,		V_A or V_B = 12 V, powered down, other logic input pins are connected to 0 V		80	125	
l _l	Bus input current	V_A or $V_B = -7$ V, other logic input pins are connected to 0 V	-100	-40		μΑ
		V_A or $V_B = -7$ V, powered down, other logic input pins are connected to 0 V	-100	-40		
R _{ID}	Differential input resistance	Measured between A and B	96			kΩ
I _{IH}	Input current on the $\overline{\text{RE}}$ pin	V _{RE} = HIGH	-20		20	μΑ
I _{IL}	Input current on the $\overline{\rm RE}$ pin	V _{RE} = LOW	-20		20	μΑ
C _D	Differential input capacitance	Input signal is f = 1.5 MHz, V _{pp} = 1V sinusoidal signals; measured between A and B		12		pF
Cı	Single-ended input capacitance	VI = 0.4 × sin (2πft), f = 1MHz		18		pF

CA-IS3080WX, CA-IS3086WX:

	Parameters	Test conditions	Minimum value	Typical value	Maximum value	Unit
V_{OH}	Output voltage high level	V _{DDA} = 5V, I _{OH} = -4mA	V _{DDA} -0.4	4.8		V
V _{OL}	Output voltage low level	$V_{DDA} = 5V$, $I_{OL} = 4mA$;		0.2	0.4	V
V _{IT+(IN)}	Positive-going input threshold voltage			-100	-20	mV
$V_{\text{IT-(IN)}}$	Negative-going input threshold voltage		-200	-130		mV
V _{I(HYS)}	Receiver input hysteresis			30		mV
		V_A or V_B = 12 V, other logic input pins are connected to 0 V		75	125	
i	Due in automorph	V _A or V _B = 12 V, powered down, other logic input pins are connected to 0 V		75	125	
l _l	Bus input current	V_A or $V_B = -7$ V, other logic input pins are connected to 0 V	-100	-43		μΑ
		V_A or $V_B = -7$ V, powered down, other logic input pins are connected to 0 V	-100	-43		
R _{ID}	Differential input resistance	Measured between A and B	96			kΩ
I _{IH}	Input current on the $\overline{\rm RE}$ pin	V _{RE} = HIGH	-20		20	μΑ
I _{IL}	Input current on the $\overline{ ext{RE}}$ pin	V _{RE} = LOW	-20		20	μΑ
C _D	Differential input capacitance	Input signal is f = 1.5 MHz, V _{pp} = 1V sinusoidal signals; measured between A and B		17		pF
Cı	Single-ended input capacitance	VI = 0.4 × sin (2πft), f = 1MHz		17		pF

6.9. Supply Current

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified.

	Parameters	Test conditions		Minimum value	Typical value	Maximum value	Unit
I _{CCA} Logic side supply current	DE 01/ 1/ DE 01/ 1/	V _{DDA} = 3.3V			7.6	mA	
ICCA	Logic side supply current	RE =0V or V_{DDA} , DE=0V or V_{DDA} V_{DDA}	V _{DDA} = 5V			8.0	mA
I _{CCB}	Bus side supply current	$\overline{\text{RE}}$ =0V or V _{DDA} , DE=0V, No bus lo	ad		•	6.8	mA

6.10. Switching Characteristics

6.10.1. Driver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified. **CA-IS3082WX, CA-IS3082WX:**

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Driver propagation delay			100	250	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	See Figure 8-2 and Figure 8-3		5	20	ns
t _r	Differential output rise time			150	500	ns
t _f	Differential output fall time			150	500	ns
t _{PZH} , t _{PZL}	Driver enable time	Coo Figure 9.7		300	800	ns
t_{PHZ}, t_{PLZ}	Driver disable time	See Figure 8-7		20	50	ns

CA-IS3088WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver propagation delay			20	50	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	see Figure 8-2 and Figure 8-3		3	12.5	ns
t _r	Differential output rise time			5	12	ns
t _f	Differential output fall time			5	12	ns
t _{PZH} , t _{PZL}	Driver enable time	Soo Eiguro 9 7		15	35	ns
t _{PHZ} , t _{PLZ}	Driver disable time	See Figure 8-7		15	35	ns

CA-IS3080WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Driver propagation delay			300	620	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	ee Figure 8-2 and Figure 8-3		5	30	ns
t _r	Differential output rise time			360	680	ns
t _f	Differential output fall time			360	680	ns
t _{PZH} , t _{PZL}	Driver enable time	Con Figure 9.7		110	650	ns
t _{PHZ} , t _{PLZ}	Driver disable time	See Figure 8-7		20	250	ns

CA-IS3086WX:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Driver propagation delay			16	48	ns
t _{PWD}	Driver output skew t _{PLH} - t _{PHL}	ee Figure 8-2 and Figure 8-3		3	12.5	ns
t _r	Differential output rise time	See Figure 8-2 and Figure 8-3		3	10	ns
t _f	Differential output fall time			3	10	ns
t_{PZH}, t_{PZL}	Driver enable time	See Figure 8-7		30	90	ns
t_{PHZ}, t_{PLZ}	Driver disable time	See Figure 6-7		25	50	ns

6.10.2. Receiver

All typical specs are at V_{DDA} = 3.3V, V_{DDB} = 5V, T_A = 25°C, Min/Max specs are over recommended operating conditions unless otherwise specified. **CA-IS3082WNX**; **CA-IS3082WNX**:

	Parameters	Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Receiver propagation delay			50	100	ns
t _{PWD}	Receiver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5			12	ns
tr	Receiver output rise time			2.5	4	ns
t _f	Receiver output fall time			2.5	4	ns
tphz, tplz	Receiver enable time, DE = 0V	See Figure 8-6		12	25	ns
tpzh, tpzl	Receiver disable time	See Figure 0-0		12	25	ns

CA-IS3088WX:

Parameters		Test conditions	Minimum	Typical	Maximum	Unit
t _{PLH} , t _{PHL}	Receiver propagation delay			50	100	ns
t _{PWD}	Receiver output skew t _{PLH} - t _{PHL}	Soo Figure 9 4 and Figure 9 F			8	ns
t _r	Receiver output rise time	See Figure 8-4 and Figure 8-5		2.5	4	ns
t _f	Receiver output fall time			2.5	4	ns
tphz, tplz	Receiver enable time, DE = 0V	San Figure 9 C		12	25	ns
tpzh, tpzl	Receiver disable time	See Figure 8-6		12	25	ns

CA-IS3080WX:

Parameters		Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Receiver propagation delay			30	120	ns
t _{PWD}	Receiver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5		7	25	ns
t _r	Receiver output rise time	See Figure 6-4 and Figure 6-5		2.5	4	ns
t _f	Receiver output fall time			2.5	4	ns
tphz, tplz	Receiver enable time, DE = 0V	Can Figure 9 6		20	40	ns
tpzн, tpzl	Receiver disable time	See Figure 8-6		20	40	ns

CA-IS3086WX:

Parameters		Test conditions	Minimum	Typical	Maximum	Unit
t_{PLH}, t_{PHL}	Receiver propagation delay			30	120	ns
t _{PWD}	Receiver output skew t _{PLH} - t _{PHL}	See Figure 8-4 and Figure 8-5		7	25	ns
t _r	Receiver output rise time	See Figure 6-4 and Figure 6-3		2.5	4	ns
t _f	Receiver output fall time			2.5	4	ns
tphz, tplz	Receiver enable time, DE = 0V	Soo Figure 9 6		20	40	ns
tpzh, tpzl	Receiver disable time	See Figure 8-6		20	40	ns

7. Parameter Measurement Information

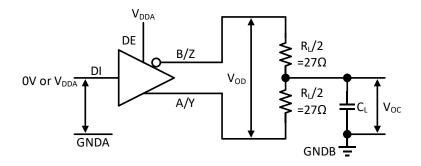


Figure 8-1 Driver DC test circuit

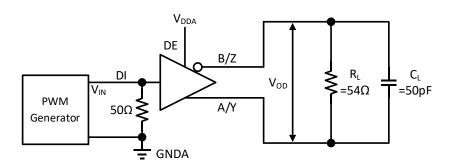


Figure 8-2 Driver propagation delays test circuit

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq$ 6 ns, fall time $t_f \leq$ 6 ns; $Z_0 =$ 50 Ω .
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance.

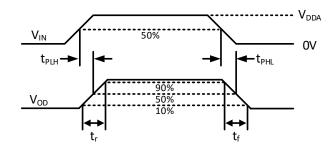


Figure 8-3 Driver propagation delays and rising/falling time

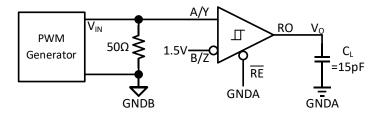


Figure 8-4 Receiver propagation delays test circuit

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq$ 6 ns, fall time $t_f \leq$ 6 ns; $Z_0 =$ 50 Ω .
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance.

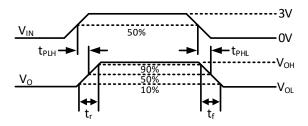


Figure 8-5 Receiver propagation delays and rising/falling time

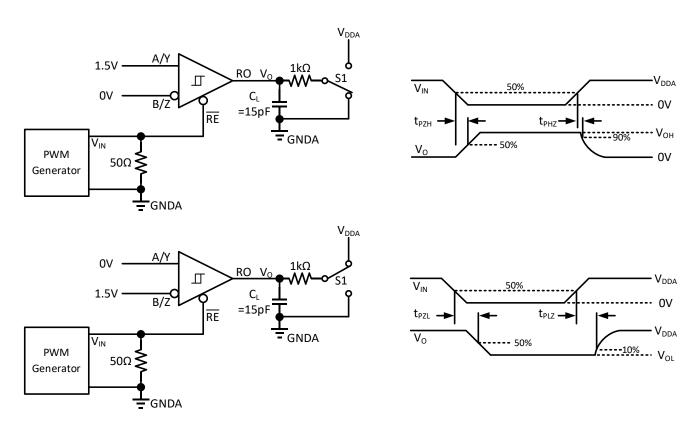


Figure 8-6 Receiver enable and disable time

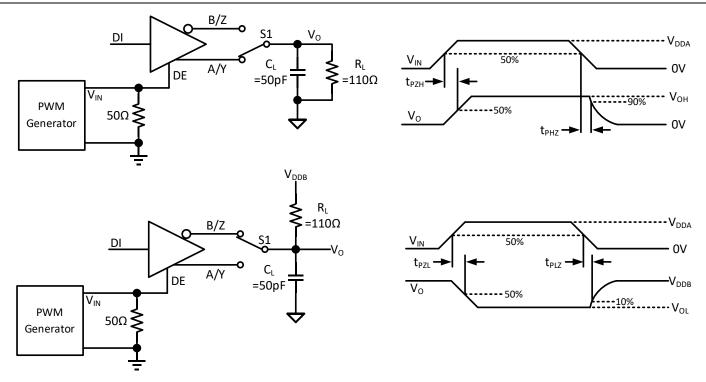


Figure 8-7 Driver enable and disable time

Note:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq$ 6 ns, fall time $t_f \leq$ 6 ns; $Z_0 =$ 50 Ω .
- 2. Load capacitance CL includes external circuit (instrumentation and fixture etc.) capacitance.

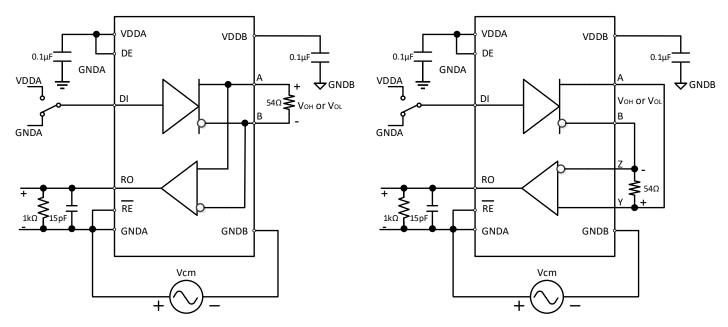


Figure 8-8 Common Mode Transient Immunity (CMTI) test for the full-duplex (left) and half-duplex (right)

8. Detailed Description

The CA-IS308x isolated RS485/RS-422 transceivers provide up to 5kV_{RMS} of galvanic isolation between the cable side (busside) of the transceiver and the controller side (logic-side). These devices feature up to 150 kV/µs common mode transient immunity, allow up to 20Mbps (CA-IS3088), 10Mbps (CA-IS3086) or 0.5Mbps (CA-IS3080/82) communication across an isolation barrier. Robust isolation coupled with extended ESD protection and increased speeds enables efficient communication in noisy environments, making them ideal for communication between logic-side and bus-side in a wide range of applications, such as motor drives, PLC communication modules, telecom rectifiers, elevators, HVACs etc. applications. Two mechanisms against excessive power dissipation caused by faults or bus contention. The first, a current limit on the output stage, provides immediate protection against short circuits over the entire common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state. The CA-IS3080WX and CA-IS3086WX provide full-duplex transceivers, while CA-IS3082WX, CA-IS3082WNX, and CA-IS3088WX provide half-duplex transceivers for RS-485 communication.

8.1. Logic Input

The CA-IS308x devices include three logic inputs on the logic side: receiver enable, driver enable and driver digital input. The transmitter enable pin DE has an internal weak pull-down to GNDA; while the digital input DI and receiver enable \overline{RE} pins have an internal pull-up to V_{DDA} . All devices use 1.5M Ω pull-up or pull-down resistor for the logic inputs, see Figure 9 for the inputs equivalent circuit of the CA-IS308x series.

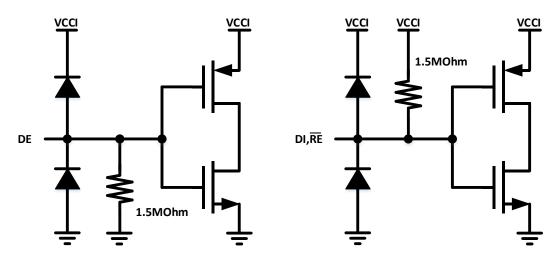


Figure 9-1 Logic input equivalent circuit

8.2. Receiver

The receiver reads the differential input from the bus line (Y/A and Z/B) and transfers this data as a single-ended, logic-level output RO to the controller. Driver the enable input $\overline{\text{RE}}$ low to enable the receiver. Driver $\overline{\text{RE}}$ logic high to disable the receiver. The truth table of receiver of CA-IS308x is shown below *Table 9-1*.

In case the receiver has been enabled, if the differential input voltage $V_{ID} = V_A - V_B$ is higher than or equal to the threshold voltage $V_{TH+(IN)}$, the RO pin output high level. Conversely, if the differential input voltage $V_{ID} = V_A - V_B$ is lower than the threshold voltage $V_{TH-(IN)}$, the RO pin output high level. if the differential input voltage V_{ID} is between $V_{TH-(IN)}$ and $V_{TH+(IN)}$, the RO pin output Indeterminate level.

In case the receiver has been disabled, the RO pin output high impedance. The receiver will disable when the \overline{RE} pin is floating why the internal \overline{RE} pin is weak pull-up to V_{DDA} .

Fail-safe feature is used to keep the receiver's output in a defined state when the receiver is not connected to the cable, the cable has an open or the cable has a short.

Table 9-1 CA-IS308x Receiver Truth Table

VDDA	VDDB	DIFFERENTIAL INPUT	ENABLE	OUTPUT
VDDA	VUUB	$(V_A - V_B)$	(RE)	(RO)
		$V_{TH+(IN)} \le V_A - V_B$	L	Н
Powered up $ \begin{array}{c c} & V_{TH-(IN)} < V_A - V_B < V_{TH+(IN)} \\ \hline & V_A - V_B \leq V_{TH-(IN)} \\ & X \end{array} $	$V_{TH-(IN)} < V_A - V_B < V_{TH+(IN)}$	L	Indeterminate	
	Powered up	$V_A - V_B \le V_{TH-(IN)}$	L	L
		X	Н	Hi-Z
		X	open	Hi-Z
		Open/Short/Idle	L	Н
Powered down	Powered up	X	X	Hi-Z
Powered up	Powered down	X	L	Н

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- 2. \overline{RE} is weakly pulled up to VDDA internally.

8.3. Driver

The transmitter converts a single-ended input signal (DI) from the local controller to differential outputs for the bus lines Y/A and Z/B. The truth table for the transmitter is provided in *Table 9-2*. The driver outputs and receiver inputs are protected from ±20kV electrostatic discharge (ESD) to GNDB on the cable side, as specified by the Human Body Model (HBM). The driver outputs also feature current limiting protection and thermal shutdown. The DE pin of driver has an internal weak pull-down to GNDA, the driver is inhibited when the DE pin is floating. The DI pin of driver has an internal weak pull-up for CA-IS308x, When the driver DE pin is enabled, if the DI is floating, the driver output high level.

Table 9-2 CA-IS308x Transmitter Truth Table

VDDA	VDDB	INPUT	ENABLE INPUT	OUTPUTS			
VDDA	VUUB	(DI)	(DE)	Y/A	Z/B		
		Н	Н	Н	L		
Powered up	Powered up	L	Н	L	Н		
		Х	L	Hi-Z	Hi-Z		
		Х	OPEN	Hi-Z	Hi-Z		
		OPEN	Н	Н	L		
Powered down	Powered up	Х	Х	Hi-Z	Hi-Z		
Powered up	Powered down	Х	Х	Hi-Z	Hi-Z		
Powered down	Powered down	Х	Х	Hi-Z	Hi-Z		

Notes:

- 1. X = don't care; H = high level; L = low level; Hi-Z = high impedance.
- 2. DI is weakly pulled up to VDDA internally, DE is weakly pulled up to VDDA internally.

8.4. Protection Functions

8.4.1. Signal Isolation

The CA-IS308x devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains.

8.4.2. Thermal Shutdown

If the junction temperature of the CA-IS308x device exceeds the thermal shutdown threshold $T_{J(shutdown)}$ (160°C, typ.), the driver outputs go high-impedance state. The shutdown condition is cleared when the junction temperature drops to normal operation temperature range of the device.

8.4.3. Current-Limit

The CA-IS308x protect the transmitter output stage against a short-circuit to a positive or negative voltage over the common mode voltage range of -7V to +12V(CA-IS3082/88) and -15V to +15V(CA-IS3080/86) by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9. Applications Information

CA-IS308x family consists of half-duplex and full-duplex RS-485 transceivers commonly used for asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the configuration of different operating modes to avoid conflicts of bus line. Full-duplex implementation requires two signal pairs (four wires), and allows each node to transmit data on one pair while simultaneously receiving data on the other pair. When the number of nodes is greater than 2, user carefully need to control the enable function of driver to avoid conflicts of bus line also.

9.1. Typical Application

An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. As seen in the following typical network application circuit, *Figure 10-1* show typical network application circuits for the full-duplex RS-422 transceivers. The driver of Master be able to send data to multiple slaves, which can receive data from slaves at the same time. *Figure 10-2* show typical network application circuits for the half-duplex RS485 transceivers. Contrast to full-duplex transceivers, which can reduce a pair of cables.

The maximum recommended data rate in the RS-485/RS-422 network is 20Mbps, which can be achieved at a maximum cable length of 40ft (12m). The absolute maximum distance is 4000ft (1.2km) of cable, at which point, data rate is limited to 100kbps. These were the specifications made in the original standard, new RS-485 transceivers and cables are pushing the limit of RS-485 far beyond its original definitions. However, the maximum data rate is still limited by the bus loading, number of nodes, cable length etc. factors. For RS485 network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. To minimize reflections, terminate the line at both ends with a termination resistor (120Ω in the typical application circuits), whose value matches the characteristic impedance (Z_0) of the cable, and keep stub lengths off the main line as short as possible. The termination resistors should always be placed at the far ends of the cable. As a general rule moreover, termination resistors should be placed at both far ends of the cable. This method, known as parallel termination, generally allows for higher data rates over longer cable length.

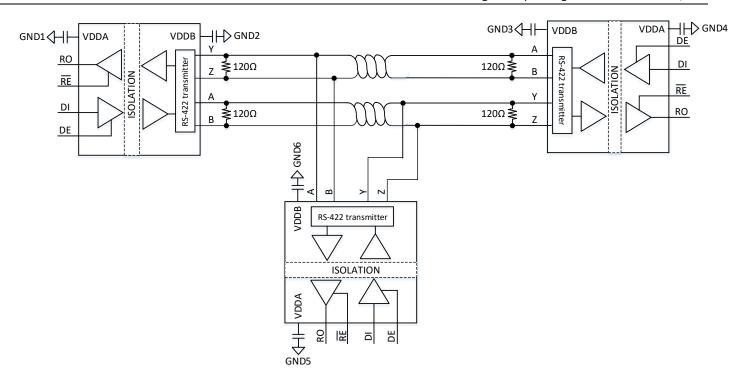


Figure 10-1 Typical isolated full-duplex RS-422 application circuit

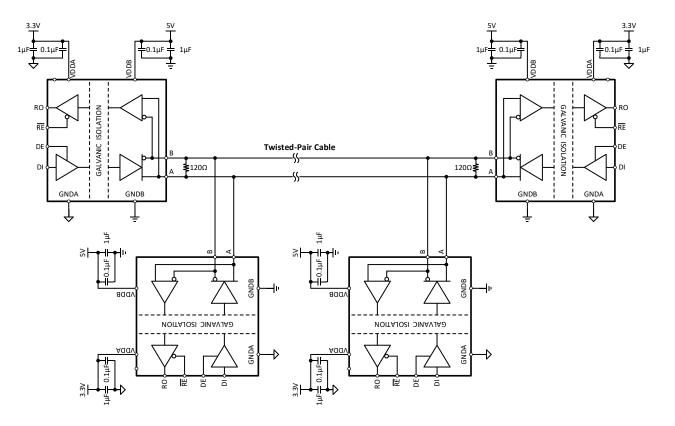
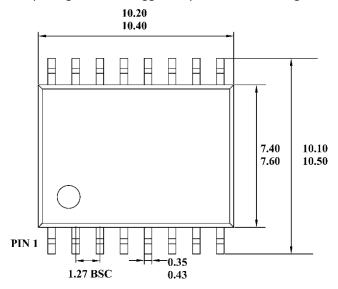
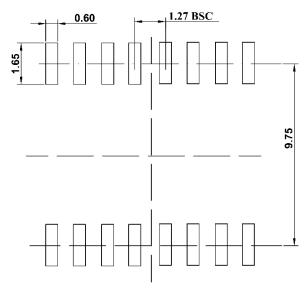


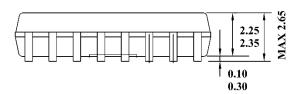
Figure 10-2 Typical isolated half-duplex RS-485 application circuit

9.2. 256 transceivers on the bus

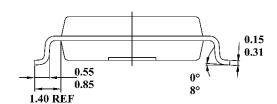
The maximum number of transceivers and receivers allowed depends on how much each device loads down the system. All devices connected to an RS-485 network should be characterized in regard to multiples or fractions of unit loads. The maximum number of unit loads allowed one twisted pair, assuming a properly terminated cable with a characteristic impedance of 120Ω or more, is 32 (375 Ω). The CA-IS308x transceivers have a 1/8-unit load (96k Ω) receiver, which allows up to 256 transceivers, connected in parallel, on one communication line.


9.3. PCB Layout


It is recommended to design an isolation channel underneath the isolator that is free from ground and signal planes. Any galvanic or metallic connection between the cable side and logic side will defeat the isolation. To make sure device operation is reliable at all data rates and supply voltages, the decoupling capacitors between VDDA and GNDA and between VDDB and GNDB are recommended. The capacitors should be located as close as possible to the IC to minimize inductance.


10. Package Information

The following diagrams illustrate the dimension diagram of CA-IS308x series digital isolators packaged in SOIC16-WB wide package and the suggested pad dimension diagram, wherein dimensions are in millimeters.



TOP VIEW

FRONT VIEW

RECOMMENDED LAND PATTERN

LEFT SIDE VIEW

11. Soldering Information

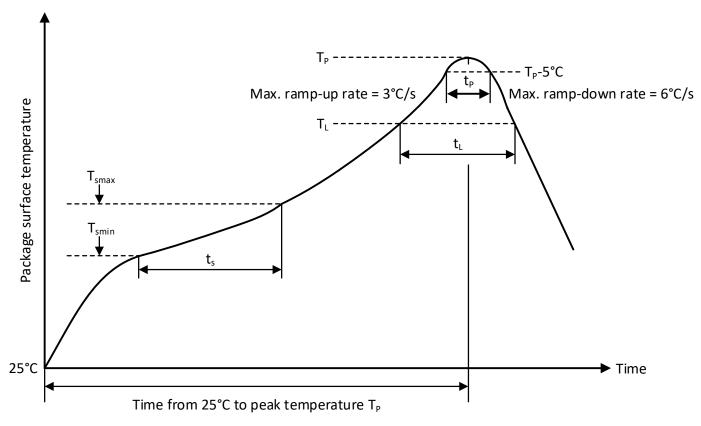
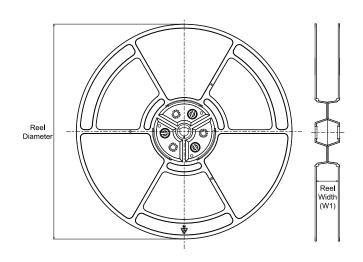
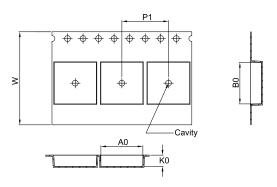


Figure. 12-1 Soldering Temperature (reflow) Profile

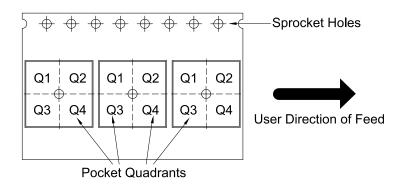

Table. 12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Soldering
Ramp-up rate ($T_L = 217^{\circ}C$ to peak T_P)	3°C/s max
Time t_s of preheat temp ($T_{smin} = 150$ °C to $T_{smax} = 200$ °C)	60~120 seconds
Time t _L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to $T_L = 217$ °C)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max



12. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
КО	Dimension designed to accommodate the component
	thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3080WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3086WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3082WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3082WNX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3088WX	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

13. Revision History

Revision Number	Description	Revised Date	Page Changed
Version 1.00	N/A		N/A
Version 1.01	The driver output changed to high-impedance state under thermal shutdown.		11
	Updated VIORM value to 1414V, VIOWM value to 1000V, VIOTM value to1414V.		8
Version 1.02	Updated CA-IS3082W/WX/WNX and CA-IS3088W/WX all parameters of EC table.		10, 12
	Add new part number CA-IS3082WNX.		2, 6, 23
	Deleted CA-IS3080W、CA-IS3082W、CA-IS3086W and CA-IS3088W information,Add		2
Version 1.03	CA-IS3080WX and CA-IS3086WX Part number and information.		
version 1.03	Add CA-IS3080/86WX VDDB operating range 3.0V~5.5V.		1
	Add CA-IS3080/86WX bus common mode operating voltage -15V to +15V.		1
Version 1.04	Updated CA-IS308x' EC table.		10~13
Version 1.05	Updated Maximum data rate up to 20Mbps of CA-IS3088WX.		1
Version 1.06	Updated POD.	2022/12/19	22
	Update enable time of CA-IS3088WX driver	2022/02/00	12
Version 1.07	Update Propagation delay time of CA-IS3088WX receiver	2023/03/09	13
Version 1.08	Update VDE, UL, TUV information	2023/09/17	8, 9
Version 1.09	Updated ESD information	2024/03/21	7
Version 1.10	Update VDE, UL, CQC, TUV information	2024/04/16	1.0.0
version 1.10	Update the test conditions of V _{IOSM}	2024/04/16	1, 8, 9
	Update VDE information:		
Version 1.11	1. Add Maximum impulse voltage V _{IMP}	2024/09/10	1, 8, 9
version 1.11	2. Update Maximum surge isolation voltage V _{IOSM}	2024/09/10	1, 0, 9
	Update CQC certification standards		
Version 1.12	Update TUV certification information	2024/12/13	1, 9
VEISIOII 1.12	Update recommended land pattern of SOIC16-WB	2024/12/13	22
Version 1.13	Add Safety Limiting Values.	2025/07/23	9

14. Important Notice

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com